Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.718

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,1,4,2,2,1,2,1,2,0,0,1,2,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.718']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355']
Outer characteristic polynomial of the knot is: t^7+69t^5+74t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.718']
2-strand cable arrow polynomial of the knot is: -768*K1**4 - 128*K1**3*K3 + 384*K1**2*K2**5 - 3200*K1**2*K2**4 + 3232*K1**2*K2**3 - 3376*K1**2*K2**2 - 160*K1**2*K2*K4 + 3072*K1**2*K2 - 96*K1**2*K3**2 - 1892*K1**2 + 1856*K1*K2**3*K3 - 256*K1*K2**2*K3 - 32*K1*K2**2*K5 + 1856*K1*K2*K3 + 160*K1*K3*K4 - 288*K2**6 + 64*K2**4*K4 - 1016*K2**4 - 224*K2**2*K3**2 - 8*K2**2*K4**2 + 304*K2**2*K4 - 328*K2**2 + 16*K2*K3*K5 - 444*K3**2 - 70*K4**2 + 1340
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.718']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16896', 'vk6.17141', 'vk6.20204', 'vk6.21486', 'vk6.23280', 'vk6.23583', 'vk6.27380', 'vk6.29012', 'vk6.35278', 'vk6.35723', 'vk6.38807', 'vk6.40984', 'vk6.42797', 'vk6.43083', 'vk6.45558', 'vk6.47343', 'vk6.55041', 'vk6.55287', 'vk6.57045', 'vk6.58145', 'vk6.59425', 'vk6.59717', 'vk6.61542', 'vk6.62724', 'vk6.64884', 'vk6.65100', 'vk6.66663', 'vk6.67492', 'vk6.68197', 'vk6.68343', 'vk6.69308', 'vk6.70070']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U2U3U4O6U5U6
R3 orbit {'O1O2O3O4U1O5U2U3U4O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6O5U1U2U3O6U4
Gauss code of K* O1O2O3U4O5O4U6U1U2U3O6U5
Gauss code of -K* O1O2O3U4O5U1U2U3U5O6O4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 2 2 1],[ 3 0 1 2 3 3 0],[ 2 -1 0 1 2 3 1],[ 0 -2 -1 0 1 2 1],[-2 -3 -2 -1 0 1 1],[-2 -3 -3 -2 -1 0 1],[-1 0 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 2 1 0 -2 -3],[-2 0 1 1 -1 -2 -3],[-2 -1 0 1 -2 -3 -3],[-1 -1 -1 0 -1 -1 0],[ 0 1 2 1 0 -1 -2],[ 2 2 3 1 1 0 -1],[ 3 3 3 0 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,2,3,-1,-1,1,2,3,-1,2,3,3,1,1,0,1,2,1]
Phi over symmetry [-3,-2,0,1,2,2,0,1,4,2,2,1,2,1,2,0,0,1,2,2,1]
Phi of -K [-3,-2,0,1,2,2,0,1,4,2,2,1,2,1,2,0,0,1,2,2,1]
Phi of K* [-2,-2,-1,0,2,3,-1,2,0,1,2,2,1,2,2,0,2,4,1,1,0]
Phi of -K* [-3,-2,0,1,2,2,1,2,0,3,3,1,1,2,3,1,1,2,-1,-1,1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 5z+11
Enhanced Jones-Krushkal polynomial -6w^4z^2+6w^3z^2-10w^3z+15w^2z+11w
Inner characteristic polynomial t^6+47t^4+17t^2
Outer characteristic polynomial t^7+69t^5+74t^3+6t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2
2-strand cable arrow polynomial -768*K1**4 - 128*K1**3*K3 + 384*K1**2*K2**5 - 3200*K1**2*K2**4 + 3232*K1**2*K2**3 - 3376*K1**2*K2**2 - 160*K1**2*K2*K4 + 3072*K1**2*K2 - 96*K1**2*K3**2 - 1892*K1**2 + 1856*K1*K2**3*K3 - 256*K1*K2**2*K3 - 32*K1*K2**2*K5 + 1856*K1*K2*K3 + 160*K1*K3*K4 - 288*K2**6 + 64*K2**4*K4 - 1016*K2**4 - 224*K2**2*K3**2 - 8*K2**2*K4**2 + 304*K2**2*K4 - 328*K2**2 + 16*K2*K3*K5 - 444*K3**2 - 70*K4**2 + 1340
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}]]
If K is slice False
Contact