Min(phi) over symmetries of the knot is: [-3,-2,0,1,1,3,0,2,1,2,3,2,2,1,3,0,1,2,0,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.700'] |
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866'] |
Outer characteristic polynomial of the knot is: t^7+64t^5+146t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.700'] |
2-strand cable arrow polynomial of the knot is: 352*K1**4*K2 - 1840*K1**4 + 640*K1**3*K2*K3 - 992*K1**3*K3 + 128*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 4592*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 896*K1**2*K2*K4 + 8728*K1**2*K2 - 2064*K1**2*K3**2 - 80*K1**2*K4**2 - 7396*K1**2 + 352*K1*K2**3*K3 - 1152*K1*K2**2*K3 - 352*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 9320*K1*K2*K3 - 96*K1*K2*K4*K5 + 3048*K1*K3*K4 + 288*K1*K4*K5 + 24*K1*K5*K6 - 504*K2**4 - 480*K2**2*K3**2 - 48*K2**2*K4**2 + 1424*K2**2*K4 - 5460*K2**2 + 536*K2*K3*K5 + 88*K2*K4*K6 - 3272*K3**2 - 1226*K4**2 - 172*K5**2 - 20*K6**2 + 5744 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.700'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.81574', 'vk6.81577', 'vk6.81656', 'vk6.81658', 'vk6.81730', 'vk6.81732', 'vk6.81861', 'vk6.81866', 'vk6.82240', 'vk6.82244', 'vk6.82383', 'vk6.82387', 'vk6.82499', 'vk6.82503', 'vk6.82578', 'vk6.82584', 'vk6.83172', 'vk6.83174', 'vk6.83608', 'vk6.83610', 'vk6.84141', 'vk6.84147', 'vk6.84332', 'vk6.84336', 'vk6.84563', 'vk6.84570', 'vk6.86487', 'vk6.86491', 'vk6.88732', 'vk6.88736', 'vk6.88909', 'vk6.88921'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5O6U1U3O5U2U6U4 |
R3 orbit | {'O1O2O3O4U5O6U1U3O5U2U6U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U1U5U3O6U2U4O5U6 |
Gauss code of K* | O1O2O3U4U1U5U3O6U2O4O5U6 |
Gauss code of -K* | O1O2O3U4O5O6U2O4U1U5U3U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 0 3 -1 2],[ 3 0 1 1 3 2 2],[ 1 -1 0 1 3 0 1],[ 0 -1 -1 0 1 0 0],[-3 -3 -3 -1 0 -2 -1],[ 1 -2 0 0 2 0 2],[-2 -2 -1 0 1 -2 0]] |
Primitive based matrix | [[ 0 3 2 0 -1 -1 -3],[-3 0 -1 -1 -2 -3 -3],[-2 1 0 0 -2 -1 -2],[ 0 1 0 0 0 -1 -1],[ 1 2 2 0 0 0 -2],[ 1 3 1 1 0 0 -1],[ 3 3 2 1 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-2,0,1,1,3,1,1,2,3,3,0,2,1,2,0,1,1,0,2,1] |
Phi over symmetry | [-3,-2,0,1,1,3,0,2,1,2,3,2,2,1,3,0,1,2,0,1,0] |
Phi of -K | [-3,-1,-1,0,2,3,0,1,2,3,3,0,1,1,2,0,2,1,2,2,0] |
Phi of K* | [-3,-2,0,1,1,3,0,2,1,2,3,2,2,1,3,0,1,2,0,1,0] |
Phi of -K* | [-3,-1,-1,0,2,3,1,2,1,2,3,0,1,1,3,0,2,2,0,1,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+25w^2z+35w |
Inner characteristic polynomial | t^6+40t^4+75t^2 |
Outer characteristic polynomial | t^7+64t^5+146t^3+7t |
Flat arrow polynomial | -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4 |
2-strand cable arrow polynomial | 352*K1**4*K2 - 1840*K1**4 + 640*K1**3*K2*K3 - 992*K1**3*K3 + 128*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 4592*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 896*K1**2*K2*K4 + 8728*K1**2*K2 - 2064*K1**2*K3**2 - 80*K1**2*K4**2 - 7396*K1**2 + 352*K1*K2**3*K3 - 1152*K1*K2**2*K3 - 352*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 9320*K1*K2*K3 - 96*K1*K2*K4*K5 + 3048*K1*K3*K4 + 288*K1*K4*K5 + 24*K1*K5*K6 - 504*K2**4 - 480*K2**2*K3**2 - 48*K2**2*K4**2 + 1424*K2**2*K4 - 5460*K2**2 + 536*K2*K3*K5 + 88*K2*K4*K6 - 3272*K3**2 - 1226*K4**2 - 172*K5**2 - 20*K6**2 + 5744 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |