Gauss code |
O1O2O3O4O5O6U2U3U1U5U6U4 |
R3 orbit |
{'O1O2O3O4O5O6U2U3U1U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U3U1U2U6U4U5 |
Gauss code of K* |
O1O2O3O4O5O6U3U1U2U6U4U5 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -4 -2 3 2 4],[ 3 0 -1 1 5 3 4],[ 4 1 0 1 4 2 3],[ 2 -1 -1 0 3 1 2],[-3 -5 -4 -3 0 -1 1],[-2 -3 -2 -1 1 0 1],[-4 -4 -3 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 4 3 2 -2 -3 -4],[-4 0 -1 -1 -2 -4 -3],[-3 1 0 -1 -3 -5 -4],[-2 1 1 0 -1 -3 -2],[ 2 2 3 1 0 -1 -1],[ 3 4 5 3 1 0 -1],[ 4 3 4 2 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-3,-2,2,3,4,1,1,2,4,3,1,3,5,4,1,3,2,1,1,1] |
Phi over symmetry |
[-4,-3,-2,2,3,4,0,1,4,3,5,0,2,1,3,3,2,4,0,1,0] |
Phi of -K |
[-4,-3,-2,2,3,4,0,1,4,3,5,0,2,1,3,3,2,4,0,1,0] |
Phi of K* |
[-4,-3,-2,2,3,4,0,1,4,3,5,0,2,1,3,3,2,4,0,1,0] |
Phi of -K* |
[-4,-3,-2,2,3,4,1,1,2,4,3,1,3,5,4,1,3,2,1,1,1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+10w^3z^2+23w^2z+23w |
Inner characteristic polynomial |
t^6+99t^4+47t^2+1 |
Outer characteristic polynomial |
t^7+157t^5+337t^3+13t |
Flat arrow polynomial |
-16*K1**4 + 8*K1**3 + 8*K1**2*K2 + 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial |
-1312*K1**4 - 64*K1**3*K3 + 256*K1**2*K2**5 - 2304*K1**2*K2**4 + 3584*K1**2*K2**3 - 10112*K1**2*K2**2 - 384*K1**2*K2*K4 + 9568*K1**2*K2 - 64*K1**2*K3**2 - 5464*K1**2 + 256*K1*K2**5*K3 + 4288*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 3008*K1*K2**2*K3 - 576*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 8368*K1*K2*K3 + 512*K1*K3*K4 + 48*K1*K4*K5 - 256*K2**8 + 256*K2**6*K4 - 3136*K2**6 - 768*K2**4*K3**2 - 192*K2**4*K4**2 + 3072*K2**4*K4 - 5232*K2**4 + 448*K2**3*K3*K5 + 64*K2**3*K4*K6 - 576*K2**3*K6 - 2080*K2**2*K3**2 - 496*K2**2*K4**2 + 4160*K2**2*K4 - 64*K2**2*K5**2 - 1456*K2**2 + 624*K2*K3*K5 + 112*K2*K4*K6 - 1760*K3**2 - 500*K4**2 - 56*K5**2 - 8*K6**2 + 4186 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}]] |
If K is slice |
True |