Gauss code |
O1O2O3O4U3O5U1U4O6U5U6U2 |
R3 orbit |
{'O1O2O3O4U3O5U1U4O6U5U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U6O5U1U4O6U2 |
Gauss code of K* |
O1O2O3U4U3U5U6O5U1O4O6U2 |
Gauss code of -K* |
O1O2O3U2O4O5U3O6U4U6U1U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 -1 1 1 1],[ 3 0 3 0 2 2 1],[-1 -3 0 -1 0 0 1],[ 1 0 1 0 1 1 0],[-1 -2 0 -1 0 1 1],[-1 -2 0 -1 -1 0 1],[-1 -1 -1 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 -3],[-1 0 1 1 -2],[-1 -1 0 1 -2],[-1 -1 -1 0 -1],[ 3 2 2 1 0]] |
If based matrix primitive |
False |
Phi of primitive based matrix |
[-1,-1,-1,3,-1,-1,2,-1,2,1] |
Phi over symmetry |
[-3,1,1,1,1,2,2,-1,-1,-1] |
Phi of -K |
[-3,1,1,1,2,2,3,-1,-1,-1] |
Phi of K* |
[-1,-1,-1,3,-1,-1,3,-1,2,2] |
Phi of -K* |
[-3,1,1,1,1,2,2,-1,-1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
z^2+22z+41 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+22w^2z+41w |
Inner characteristic polynomial |
t^4+12t^2+1 |
Outer characteristic polynomial |
t^5+24t^3+19t |
Flat arrow polynomial |
4*K1**3 - 8*K1**2 - 10*K1*K2 + 2*K1 + 4*K2 + 4*K3 + 5 |
2-strand cable arrow polynomial |
-640*K1**6 - 128*K1**4*K2**2 + 1920*K1**4*K2 - 4288*K1**4 + 608*K1**3*K2*K3 - 800*K1**3*K3 + 384*K1**2*K2**3 - 4048*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 8376*K1**2*K2 - 1472*K1**2*K3**2 - 128*K1**2*K3*K5 - 368*K1**2*K4**2 - 5224*K1**2 + 96*K1*K2**3*K3 - 832*K1*K2**2*K3 - 32*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 7192*K1*K2*K3 + 2728*K1*K3*K4 + 648*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 528*K2**4 - 32*K2**3*K6 - 432*K2**2*K3**2 - 168*K2**2*K4**2 + 1296*K2**2*K4 - 4832*K2**2 - 64*K2*K3**2*K4 + 624*K2*K3*K5 + 176*K2*K4*K6 - 32*K3**4 + 64*K3**2*K6 - 2888*K3**2 - 1268*K4**2 - 336*K5**2 - 56*K6**2 + 5346 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |