Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,1,2,2,4,0,0,1,1,1,2,3,1,0,-2] |
Flat knots (up to 7 crossings) with same phi are :['6.674'] |
Arrow polynomial of the knot is: -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.136', '6.207', '6.342', '6.370', '6.376', '6.442', '6.456', '6.539', '6.631', '6.636', '6.674', '6.679', '6.705', '6.740', '6.760', '6.794', '6.795', '6.1369'] |
Outer characteristic polynomial of the knot is: t^7+66t^5+66t^3+10t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.674'] |
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 352*K1**4*K2 - 3376*K1**4 + 160*K1**3*K2*K3 - 288*K1**3*K3 + 640*K1**2*K2**3 - 7280*K1**2*K2**2 - 480*K1**2*K2*K4 + 9152*K1**2*K2 - 144*K1**2*K3**2 - 3800*K1**2 + 352*K1*K2**3*K3 - 640*K1*K2**2*K3 - 224*K1*K2**2*K5 + 6768*K1*K2*K3 + 632*K1*K3*K4 + 72*K1*K4*K5 - 2256*K2**4 - 432*K2**2*K3**2 - 8*K2**2*K4**2 + 1928*K2**2*K4 - 2822*K2**2 + 320*K2*K3*K5 + 8*K2*K4*K6 - 1516*K3**2 - 512*K4**2 - 76*K5**2 - 2*K6**2 + 3662 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.674'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17089', 'vk6.17331', 'vk6.20245', 'vk6.21552', 'vk6.23476', 'vk6.23815', 'vk6.27468', 'vk6.29065', 'vk6.35617', 'vk6.36063', 'vk6.38879', 'vk6.41081', 'vk6.42990', 'vk6.43301', 'vk6.45644', 'vk6.47381', 'vk6.55228', 'vk6.55479', 'vk6.57078', 'vk6.58233', 'vk6.59629', 'vk6.59974', 'vk6.61616', 'vk6.62796', 'vk6.65026', 'vk6.65228', 'vk6.66708', 'vk6.67567', 'vk6.68298', 'vk6.68447', 'vk6.69358', 'vk6.70102'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3O5U1U2O6U5U4U6 |
R3 orbit | {'O1O2O3O4U3O5U1U2O6U5U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U1U6O5U3U4O6U2 |
Gauss code of K* | O1O2O3U4U5U6U2O6U1O4O5U3 |
Gauss code of -K* | O1O2O3U1O4O5U3O6U2U6U4U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 -1 2 1 2],[ 3 0 1 0 4 2 2],[ 1 -1 0 0 3 1 2],[ 1 0 0 0 1 0 1],[-2 -4 -3 -1 0 0 2],[-1 -2 -1 0 0 0 1],[-2 -2 -2 -1 -2 -1 0]] |
Primitive based matrix | [[ 0 2 2 1 -1 -1 -3],[-2 0 2 0 -1 -3 -4],[-2 -2 0 -1 -1 -2 -2],[-1 0 1 0 0 -1 -2],[ 1 1 1 0 0 0 0],[ 1 3 2 1 0 0 -1],[ 3 4 2 2 0 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,1,1,3,-2,0,1,3,4,1,1,2,2,0,1,2,0,0,1] |
Phi over symmetry | [-3,-1,-1,1,2,2,0,1,2,2,4,0,0,1,1,1,2,3,1,0,-2] |
Phi of -K | [-3,-1,-1,1,2,2,1,2,2,1,3,0,1,0,1,2,2,2,1,0,-2] |
Phi of K* | [-2,-2,-1,1,1,3,-2,0,1,2,3,1,0,2,1,1,2,2,0,1,2] |
Phi of -K* | [-3,-1,-1,1,2,2,0,1,2,2,4,0,0,1,1,1,2,3,1,0,-2] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | 5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+7w^3z^2+24w^2z+29w |
Inner characteristic polynomial | t^6+46t^4+24t^2+1 |
Outer characteristic polynomial | t^7+66t^5+66t^3+10t |
Flat arrow polynomial | -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial | -192*K1**4*K2**2 + 352*K1**4*K2 - 3376*K1**4 + 160*K1**3*K2*K3 - 288*K1**3*K3 + 640*K1**2*K2**3 - 7280*K1**2*K2**2 - 480*K1**2*K2*K4 + 9152*K1**2*K2 - 144*K1**2*K3**2 - 3800*K1**2 + 352*K1*K2**3*K3 - 640*K1*K2**2*K3 - 224*K1*K2**2*K5 + 6768*K1*K2*K3 + 632*K1*K3*K4 + 72*K1*K4*K5 - 2256*K2**4 - 432*K2**2*K3**2 - 8*K2**2*K4**2 + 1928*K2**2*K4 - 2822*K2**2 + 320*K2*K3*K5 + 8*K2*K4*K6 - 1516*K3**2 - 512*K4**2 - 76*K5**2 - 2*K6**2 + 3662 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice | False |