Gauss code |
O1O2O3O4U2O5U6U3O6U1U5U4 |
R3 orbit |
{'O1O2O3O4U2O5U6U3O6U1U5U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U5U4O6U2U6O5U3 |
Gauss code of K* |
O1O2O3U1U4U5U3O4U2O6O5U6 |
Gauss code of -K* |
O1O2O3U4O5O4U2O6U1U5U6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -2 0 3 2 -1],[ 2 0 -1 2 4 2 1],[ 2 1 0 1 2 1 1],[ 0 -2 -1 0 1 0 0],[-3 -4 -2 -1 0 0 -3],[-2 -2 -1 0 0 0 -2],[ 1 -1 -1 0 3 2 0]] |
Primitive based matrix |
[[ 0 3 2 0 -1 -2 -2],[-3 0 0 -1 -3 -2 -4],[-2 0 0 0 -2 -1 -2],[ 0 1 0 0 0 -1 -2],[ 1 3 2 0 0 -1 -1],[ 2 2 1 1 1 0 1],[ 2 4 2 2 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,0,1,2,2,0,1,3,2,4,0,2,1,2,0,1,2,1,1,-1] |
Phi over symmetry |
[-3,-2,0,1,2,2,0,1,3,2,4,0,2,1,2,0,1,2,1,1,-1] |
Phi of -K |
[-2,-2,-1,0,2,3,-1,0,1,3,3,0,0,2,1,1,1,1,2,2,1] |
Phi of K* |
[-3,-2,0,1,2,2,1,2,1,1,3,2,1,2,3,1,0,1,0,0,-1] |
Phi of -K* |
[-2,-2,-1,0,2,3,-1,1,2,2,4,1,1,1,2,0,2,3,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
Inner characteristic polynomial |
t^6+47t^4+67t^2+1 |
Outer characteristic polynomial |
t^7+69t^5+128t^3+11t |
Flat arrow polynomial |
4*K1**3 - 10*K1**2 - 6*K1*K2 + 5*K2 + 2*K3 + 6 |
2-strand cable arrow polynomial |
-64*K1**6 - 192*K1**4*K2**2 + 1344*K1**4*K2 - 3184*K1**4 + 288*K1**3*K2*K3 - 736*K1**3*K3 + 896*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 5728*K1**2*K2**2 - 544*K1**2*K2*K4 + 9136*K1**2*K2 - 752*K1**2*K3**2 - 64*K1**2*K4**2 - 6132*K1**2 + 160*K1*K2**3*K3 - 1344*K1*K2**2*K3 - 192*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 8136*K1*K2*K3 - 32*K1*K2*K4*K5 + 1736*K1*K3*K4 + 200*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 888*K2**4 - 32*K2**3*K6 - 384*K2**2*K3**2 - 24*K2**2*K4**2 + 1616*K2**2*K4 - 5148*K2**2 + 536*K2*K3*K5 + 56*K2*K4*K6 - 2764*K3**2 - 934*K4**2 - 192*K5**2 - 28*K6**2 + 5348 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |