Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.658

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,2,2,2,3,1,1,0,1,1,2,2,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.658']
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384']
Outer characteristic polynomial of the knot is: t^7+62t^5+39t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.658']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 64*K1**4*K2**2 + 896*K1**4*K2 - 4848*K1**4 + 192*K1**3*K2*K3 - 608*K1**3*K3 - 2512*K1**2*K2**2 - 96*K1**2*K2*K4 + 7744*K1**2*K2 - 336*K1**2*K3**2 - 2716*K1**2 - 128*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 3072*K1*K2*K3 + 336*K1*K3*K4 + 16*K1*K4*K5 - 160*K2**4 - 80*K2**2*K3**2 - 8*K2**2*K4**2 + 232*K2**2*K4 - 2822*K2**2 + 64*K2*K3*K5 + 8*K2*K4*K6 - 824*K3**2 - 124*K4**2 - 12*K5**2 - 2*K6**2 + 2874
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.658']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20000', 'vk6.20084', 'vk6.21272', 'vk6.21366', 'vk6.27047', 'vk6.27149', 'vk6.28752', 'vk6.28838', 'vk6.38448', 'vk6.38550', 'vk6.40637', 'vk6.40747', 'vk6.45328', 'vk6.45450', 'vk6.47097', 'vk6.47192', 'vk6.56815', 'vk6.56889', 'vk6.57949', 'vk6.58027', 'vk6.61329', 'vk6.61419', 'vk6.62505', 'vk6.62576', 'vk6.66535', 'vk6.66597', 'vk6.67324', 'vk6.67388', 'vk6.69177', 'vk6.69249', 'vk6.69928', 'vk6.69990']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U3U1O6U4U6U5
R3 orbit {'O1O2O3O4U2O5U3U1O6U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U1O6U4U2O5U3
Gauss code of K* O1O2O3U4U5U6U1O5U3O6O4U2
Gauss code of -K* O1O2O3U2O4O5U1O6U3U5U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 -1 1 3 1],[ 2 0 -1 1 3 3 1],[ 2 1 0 1 2 2 1],[ 1 -1 -1 0 1 2 1],[-1 -3 -2 -1 0 2 1],[-3 -3 -2 -2 -2 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 3 1 1 -1 -2 -2],[-3 0 0 -2 -2 -2 -3],[-1 0 0 -1 -1 -1 -1],[-1 2 1 0 -1 -2 -3],[ 1 2 1 1 0 -1 -1],[ 2 2 1 2 1 0 1],[ 2 3 1 3 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,1,2,2,0,2,2,2,3,1,1,1,1,1,2,3,1,1,-1]
Phi over symmetry [-3,-1,-1,1,2,2,0,2,2,2,3,1,1,0,1,1,2,2,0,0,-1]
Phi of -K [-2,-2,-1,1,1,3,-1,0,1,2,3,0,0,2,2,1,1,2,-1,0,2]
Phi of K* [-3,-1,-1,1,2,2,0,2,2,2,3,1,1,0,1,1,2,2,0,0,-1]
Phi of -K* [-2,-2,-1,1,1,3,-1,1,1,3,3,1,1,2,2,1,1,2,-1,0,2]
Symmetry type of based matrix c
u-polynomial -t^3+2t^2-t
Normalized Jones-Krushkal polynomial 17z+35
Enhanced Jones-Krushkal polynomial 17w^2z+35w
Inner characteristic polynomial t^6+42t^4+15t^2
Outer characteristic polynomial t^7+62t^5+39t^3+4t
Flat arrow polynomial -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -64*K1**6 - 64*K1**4*K2**2 + 896*K1**4*K2 - 4848*K1**4 + 192*K1**3*K2*K3 - 608*K1**3*K3 - 2512*K1**2*K2**2 - 96*K1**2*K2*K4 + 7744*K1**2*K2 - 336*K1**2*K3**2 - 2716*K1**2 - 128*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 3072*K1*K2*K3 + 336*K1*K3*K4 + 16*K1*K4*K5 - 160*K2**4 - 80*K2**2*K3**2 - 8*K2**2*K4**2 + 232*K2**2*K4 - 2822*K2**2 + 64*K2*K3*K5 + 8*K2*K4*K6 - 824*K3**2 - 124*K4**2 - 12*K5**2 - 2*K6**2 + 2874
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}]]
If K is slice False
Contact