Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.657

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,1,3,4,0,1,1,2,0,0,0,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.657']
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384']
Outer characteristic polynomial of the knot is: t^7+56t^5+71t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.657']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 608*K1**4*K2 - 1200*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 + 128*K1**2*K2**3 - 1264*K1**2*K2**2 + 1696*K1**2*K2 - 208*K1**2*K3**2 - 32*K1**2*K4**2 - 648*K1**2 + 1080*K1*K2*K3 + 232*K1*K3*K4 + 32*K1*K4*K5 - 128*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 80*K2**2*K4 - 678*K2**2 + 40*K2*K3*K5 + 8*K2*K4*K6 - 332*K3**2 - 100*K4**2 - 20*K5**2 - 2*K6**2 + 826
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.657']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13928', 'vk6.13949', 'vk6.14023', 'vk6.14045', 'vk6.14999', 'vk6.15016', 'vk6.15120', 'vk6.15138', 'vk6.16537', 'vk6.16630', 'vk6.17448', 'vk6.17469', 'vk6.17487', 'vk6.23956', 'vk6.23978', 'vk6.23989', 'vk6.24011', 'vk6.24112', 'vk6.25997', 'vk6.26383', 'vk6.33746', 'vk6.33829', 'vk6.34938', 'vk6.35056', 'vk6.36271', 'vk6.36363', 'vk6.37604', 'vk6.37693', 'vk6.43411', 'vk6.44586', 'vk6.53880', 'vk6.54430', 'vk6.54782', 'vk6.54871', 'vk6.55600', 'vk6.56436', 'vk6.56551', 'vk6.60103', 'vk6.60109', 'vk6.60188']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U5O6U4U6U3
R3 orbit {'O1O2O3O4U2O5U1U5U3O6U4U6', 'O1O2O3O4U2O5U1U5O6U4U6U3'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U2U5U1O5U6U4O6U3
Gauss code of K* O1O2O3U4U5U3U1O5U6O4O6U2
Gauss code of -K* O1O2O3U2O4O5U4O6U3U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 2 1 1 1],[ 3 0 0 4 3 1 1],[ 2 0 0 2 1 0 1],[-2 -4 -2 0 -1 0 1],[-1 -3 -1 1 0 0 1],[-1 -1 0 0 0 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 1 -2 -3],[-2 0 1 0 -1 -2 -4],[-1 -1 0 0 -1 -1 -1],[-1 0 0 0 0 0 -1],[-1 1 1 0 0 -1 -3],[ 2 2 1 0 1 0 0],[ 3 4 1 1 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,-1,2,3,-1,0,1,2,4,0,1,1,1,0,0,1,1,3,0]
Phi over symmetry [-3,-2,1,1,1,2,0,1,1,3,4,0,1,1,2,0,0,0,-1,-1,1]
Phi of -K [-3,-2,1,1,1,2,1,1,3,3,1,2,2,3,2,-1,0,0,0,2,1]
Phi of K* [-2,-1,-1,-1,2,3,0,1,2,2,1,0,1,2,1,0,3,3,2,3,1]
Phi of -K* [-3,-2,1,1,1,2,0,1,1,3,4,0,1,1,2,0,0,0,-1,-1,1]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial 9w^2z+19w
Inner characteristic polynomial t^6+36t^4+21t^2
Outer characteristic polynomial t^7+56t^5+71t^3
Flat arrow polynomial -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -192*K1**4*K2**2 + 608*K1**4*K2 - 1200*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 + 128*K1**2*K2**3 - 1264*K1**2*K2**2 + 1696*K1**2*K2 - 208*K1**2*K3**2 - 32*K1**2*K4**2 - 648*K1**2 + 1080*K1*K2*K3 + 232*K1*K3*K4 + 32*K1*K4*K5 - 128*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 80*K2**2*K4 - 678*K2**2 + 40*K2*K3*K5 + 8*K2*K4*K6 - 332*K3**2 - 100*K4**2 - 20*K5**2 - 2*K6**2 + 826
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}]]
If K is slice False
Contact