Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.655

Min(phi) over symmetries of the knot is: [-3,-2,0,1,1,3,0,3,1,1,4,1,0,1,2,0,1,2,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.655']
Arrow polynomial of the knot is: -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.425', '6.655', '6.755', '6.769', '6.792', '6.1240', '6.1494', '6.1522', '6.1534', '6.1587', '6.1707', '6.1746', '6.1747', '6.1786', '6.1814', '6.1828', '6.1835', '6.1854', '6.1870']
Outer characteristic polynomial of the knot is: t^7+62t^5+80t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.655']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 64*K1**4*K2**2 + 576*K1**4*K2 - 2384*K1**4 + 160*K1**3*K2*K3 - 384*K1**3*K3 + 352*K1**2*K2**3 - 4048*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 6032*K1**2*K2 - 848*K1**2*K3**2 - 48*K1**2*K4**2 - 3144*K1**2 - 416*K1*K2**2*K3 - 32*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 4920*K1*K2*K3 + 1048*K1*K3*K4 + 104*K1*K4*K5 + 16*K1*K5*K6 - 712*K2**4 - 288*K2**2*K3**2 - 16*K2**2*K4**2 + 952*K2**2*K4 - 2756*K2**2 + 408*K2*K3*K5 + 16*K2*K4*K6 - 1452*K3**2 - 506*K4**2 - 124*K5**2 - 12*K6**2 + 3032
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.655']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13885', 'vk6.13982', 'vk6.14119', 'vk6.14340', 'vk6.14956', 'vk6.15079', 'vk6.15573', 'vk6.16043', 'vk6.16299', 'vk6.16324', 'vk6.17417', 'vk6.22614', 'vk6.22647', 'vk6.23925', 'vk6.33696', 'vk6.33773', 'vk6.34132', 'vk6.34256', 'vk6.34598', 'vk6.36196', 'vk6.36221', 'vk6.42298', 'vk6.53871', 'vk6.53914', 'vk6.54094', 'vk6.54416', 'vk6.54582', 'vk6.55575', 'vk6.59029', 'vk6.59058', 'vk6.60067', 'vk6.64554']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U5O6U3U6U4
R3 orbit {'O1O2O3O4U2O5U1U5O6U3U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U2O5U6U4O6U3
Gauss code of K* O1O2O3U4U5U1U3O5U6O4O6U2
Gauss code of -K* O1O2O3U2O4O5U4O6U1U3U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 3 1 1],[ 3 0 0 3 4 1 1],[ 2 0 0 1 2 0 1],[ 0 -3 -1 0 2 0 1],[-3 -4 -2 -2 0 0 0],[-1 -1 0 0 0 0 0],[-1 -1 -1 -1 0 0 0]]
Primitive based matrix [[ 0 3 1 1 0 -2 -3],[-3 0 0 0 -2 -2 -4],[-1 0 0 0 0 0 -1],[-1 0 0 0 -1 -1 -1],[ 0 2 0 1 0 -1 -3],[ 2 2 0 1 1 0 0],[ 3 4 1 1 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,0,2,3,0,0,2,2,4,0,0,0,1,1,1,1,1,3,0]
Phi over symmetry [-3,-2,0,1,1,3,0,3,1,1,4,1,0,1,2,0,1,2,0,0,0]
Phi of -K [-3,-2,0,1,1,3,1,0,3,3,2,1,2,3,3,0,1,1,0,2,2]
Phi of K* [-3,-1,-1,0,2,3,2,2,1,3,2,0,0,2,3,1,3,3,1,0,1]
Phi of -K* [-3,-2,0,1,1,3,0,3,1,1,4,1,0,1,2,0,1,2,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2+20w^2z+29w
Inner characteristic polynomial t^6+38t^4+27t^2
Outer characteristic polynomial t^7+62t^5+80t^3+4t
Flat arrow polynomial -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
2-strand cable arrow polynomial -64*K1**6 - 64*K1**4*K2**2 + 576*K1**4*K2 - 2384*K1**4 + 160*K1**3*K2*K3 - 384*K1**3*K3 + 352*K1**2*K2**3 - 4048*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 6032*K1**2*K2 - 848*K1**2*K3**2 - 48*K1**2*K4**2 - 3144*K1**2 - 416*K1*K2**2*K3 - 32*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 4920*K1*K2*K3 + 1048*K1*K3*K4 + 104*K1*K4*K5 + 16*K1*K5*K6 - 712*K2**4 - 288*K2**2*K3**2 - 16*K2**2*K4**2 + 952*K2**2*K4 - 2756*K2**2 + 408*K2*K3*K5 + 16*K2*K4*K6 - 1452*K3**2 - 506*K4**2 - 124*K5**2 - 12*K6**2 + 3032
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}]]
If K is slice False
Contact