Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.653

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,2,2,4,0,1,1,2,-1,-1,-1,-1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.653']
Arrow polynomial of the knot is: 12*K1**3 - 4*K1**2 - 10*K1*K2 - 4*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.653', '6.1267']
Outer characteristic polynomial of the knot is: t^7+56t^5+69t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.653']
2-strand cable arrow polynomial of the knot is: -96*K1**4 - 64*K1**3*K3 - 576*K1**2*K2**4 + 1024*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 8080*K1**2*K2**2 - 608*K1**2*K2*K4 + 8280*K1**2*K2 - 32*K1**2*K3**2 - 96*K1**2*K4**2 - 6304*K1**2 + 1824*K1*K2**3*K3 - 1600*K1*K2**2*K3 - 640*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 8728*K1*K2*K3 + 880*K1*K3*K4 + 136*K1*K4*K5 - 352*K2**6 + 608*K2**4*K4 - 3216*K2**4 - 128*K2**3*K6 - 944*K2**2*K3**2 - 264*K2**2*K4**2 + 3408*K2**2*K4 - 4020*K2**2 + 480*K2*K3*K5 + 112*K2*K4*K6 - 2248*K3**2 - 924*K4**2 - 64*K5**2 - 12*K6**2 + 4786
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.653']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11059', 'vk6.11137', 'vk6.12223', 'vk6.12330', 'vk6.18339', 'vk6.18678', 'vk6.24779', 'vk6.25238', 'vk6.30636', 'vk6.30731', 'vk6.31870', 'vk6.31940', 'vk6.36965', 'vk6.37424', 'vk6.44154', 'vk6.44476', 'vk6.51860', 'vk6.51905', 'vk6.52725', 'vk6.52832', 'vk6.56115', 'vk6.56338', 'vk6.60634', 'vk6.60971', 'vk6.63522', 'vk6.63567', 'vk6.64002', 'vk6.64047', 'vk6.65767', 'vk6.66030', 'vk6.68774', 'vk6.68984']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U4O6U5U6U3
R3 orbit {'O1O2O3O4U2O5U1U4O6U5U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U6O5U1U4O6U3
Gauss code of K* O1O2O3U4U5U3U6O5U1O4O6U2
Gauss code of -K* O1O2O3U2O4O5U3O6U4U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 2 1 1 1],[ 3 0 0 4 2 2 1],[ 2 0 0 2 1 1 0],[-2 -4 -2 0 -1 0 1],[-1 -2 -1 1 0 1 1],[-1 -2 -1 0 -1 0 1],[-1 -1 0 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 1 -2 -3],[-2 0 1 0 -1 -2 -4],[-1 -1 0 -1 -1 0 -1],[-1 0 1 0 -1 -1 -2],[-1 1 1 1 0 -1 -2],[ 2 2 0 1 1 0 0],[ 3 4 1 2 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,-1,2,3,-1,0,1,2,4,1,1,0,1,1,1,2,1,2,0]
Phi over symmetry [-3,-2,1,1,1,2,0,1,2,2,4,0,1,1,2,-1,-1,-1,-1,0,1]
Phi of -K [-3,-2,1,1,1,2,1,2,2,3,1,2,2,3,2,-1,-1,0,-1,1,2]
Phi of K* [-2,-1,-1,-1,2,3,0,1,2,2,1,1,1,2,2,1,2,2,3,3,1]
Phi of -K* [-3,-2,1,1,1,2,0,1,2,2,4,0,1,1,2,-1,-1,-1,-1,0,1]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 7z^2+26z+25
Enhanced Jones-Krushkal polynomial 7w^3z^2-2w^3z+28w^2z+25w
Inner characteristic polynomial t^6+36t^4+19t^2+1
Outer characteristic polynomial t^7+56t^5+69t^3+10t
Flat arrow polynomial 12*K1**3 - 4*K1**2 - 10*K1*K2 - 4*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -96*K1**4 - 64*K1**3*K3 - 576*K1**2*K2**4 + 1024*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 8080*K1**2*K2**2 - 608*K1**2*K2*K4 + 8280*K1**2*K2 - 32*K1**2*K3**2 - 96*K1**2*K4**2 - 6304*K1**2 + 1824*K1*K2**3*K3 - 1600*K1*K2**2*K3 - 640*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 8728*K1*K2*K3 + 880*K1*K3*K4 + 136*K1*K4*K5 - 352*K2**6 + 608*K2**4*K4 - 3216*K2**4 - 128*K2**3*K6 - 944*K2**2*K3**2 - 264*K2**2*K4**2 + 3408*K2**2*K4 - 4020*K2**2 + 480*K2*K3*K5 + 112*K2*K4*K6 - 2248*K3**2 - 924*K4**2 - 64*K5**2 - 12*K6**2 + 4786
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact