Gauss code |
O1O2O3O4U1O5U6U4O6U3U5U2 |
R3 orbit |
{'O1O2O3O4U1O5U6U4O6U3U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U2O6U1U6O5U4 |
Gauss code of K* |
O1O2O3U4U3U1U5O4U2O6O5U6 |
Gauss code of -K* |
O1O2O3U4O5O4U2O6U5U3U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 0 1 2 -1],[ 3 0 3 2 1 2 2],[-1 -3 0 -1 0 2 -2],[ 0 -2 1 0 1 2 -1],[-1 -1 0 -1 0 0 -1],[-2 -2 -2 -2 0 0 -2],[ 1 -2 2 1 1 2 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -2 -2 -2 -2],[-1 0 0 0 -1 -1 -1],[-1 2 0 0 -1 -2 -3],[ 0 2 1 1 0 -1 -2],[ 1 2 1 2 1 0 -2],[ 3 2 1 3 2 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,2,2,2,2,0,1,1,1,1,2,3,1,2,2] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,1,1,3,3,0,0,1,1,0,0,0,0,-1,1] |
Phi of -K |
[-3,-1,0,1,1,2,0,1,1,3,3,0,0,1,1,0,0,0,0,-1,1] |
Phi of K* |
[-2,-1,-1,0,1,3,-1,1,0,1,3,0,0,0,1,0,1,3,0,1,0] |
Phi of -K* |
[-3,-1,0,1,1,2,2,2,1,3,2,1,1,2,2,1,1,2,0,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
Inner characteristic polynomial |
t^6+42t^4+28t^2+4 |
Outer characteristic polynomial |
t^7+58t^5+49t^3+9t |
Flat arrow polynomial |
-10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-384*K1**6 - 384*K1**4*K2**2 + 1824*K1**4*K2 - 5088*K1**4 + 352*K1**3*K2*K3 - 288*K1**3*K3 + 1248*K1**2*K2**3 - 7744*K1**2*K2**2 - 416*K1**2*K2*K4 + 9728*K1**2*K2 - 480*K1**2*K3**2 - 96*K1**2*K3*K5 - 3020*K1**2 - 1280*K1*K2**2*K3 + 6576*K1*K2*K3 + 976*K1*K3*K4 + 64*K1*K4*K5 - 1592*K2**4 - 208*K2**2*K3**2 - 8*K2**2*K4**2 + 1536*K2**2*K4 - 3134*K2**2 + 240*K2*K3*K5 + 8*K2*K4*K6 - 1544*K3**2 - 474*K4**2 - 76*K5**2 - 2*K6**2 + 3664 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |