Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.644

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,3,3,2,2,1,1,1,0,1,1,0,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.644']
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354']
Outer characteristic polynomial of the knot is: t^7+42t^5+73t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.644']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 256*K1**4*K2 - 3568*K1**4 + 32*K1**3*K2*K3 - 32*K1**3*K3 + 288*K1**2*K2**3 - 4880*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 7384*K1**2*K2 - 1648*K1**2*K3**2 - 48*K1**2*K4**2 - 3260*K1**2 - 448*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 6224*K1*K2*K3 + 1760*K1*K3*K4 + 40*K1*K4*K5 - 408*K2**4 - 176*K2**2*K3**2 - 8*K2**2*K4**2 + 568*K2**2*K4 - 3182*K2**2 + 200*K2*K3*K5 + 8*K2*K4*K6 - 1892*K3**2 - 542*K4**2 - 40*K5**2 - 2*K6**2 + 3564
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.644']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4061', 'vk6.4094', 'vk6.5299', 'vk6.5332', 'vk6.7429', 'vk6.7454', 'vk6.8922', 'vk6.8955', 'vk6.10121', 'vk6.10290', 'vk6.10315', 'vk6.14555', 'vk6.15267', 'vk6.15394', 'vk6.15773', 'vk6.16190', 'vk6.29869', 'vk6.29902', 'vk6.33909', 'vk6.33992', 'vk6.34222', 'vk6.34377', 'vk6.48462', 'vk6.49162', 'vk6.50209', 'vk6.50236', 'vk6.51597', 'vk6.53960', 'vk6.54023', 'vk6.54189', 'vk6.54465', 'vk6.63316']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U4U5O6U2U6U3
R3 orbit {'O1O2O3O4U1O5U4U5O6U2U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U3O5U6U1O6U4
Gauss code of K* O1O2O3U4U1U3U5O4U6O5O6U2
Gauss code of -K* O1O2O3U2O4O5U4O6U5U1U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 2 0 1 1],[ 3 0 2 3 1 1 1],[ 1 -2 0 2 -1 1 1],[-2 -3 -2 0 -1 1 0],[ 0 -1 1 1 0 1 0],[-1 -1 -1 -1 -1 0 0],[-1 -1 -1 0 0 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 1 0 -1 -2 -3],[-1 -1 0 0 -1 -1 -1],[-1 0 0 0 0 -1 -1],[ 0 1 1 0 0 1 -1],[ 1 2 1 1 -1 0 -2],[ 3 3 1 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,-1,0,1,2,3,0,1,1,1,0,1,1,-1,1,2]
Phi over symmetry [-3,-1,0,1,1,2,0,2,3,3,2,2,1,1,1,0,1,1,0,2,1]
Phi of -K [-3,-1,0,1,1,2,0,2,3,3,2,2,1,1,1,0,1,1,0,2,1]
Phi of K* [-2,-1,-1,0,1,3,1,2,1,1,2,0,1,1,3,0,1,3,2,2,0]
Phi of -K* [-3,-1,0,1,1,2,2,1,1,1,3,-1,1,1,2,0,1,1,0,0,-1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+26t^4+26t^2+1
Outer characteristic polynomial t^7+42t^5+73t^3+7t
Flat arrow polynomial -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -64*K1**6 + 256*K1**4*K2 - 3568*K1**4 + 32*K1**3*K2*K3 - 32*K1**3*K3 + 288*K1**2*K2**3 - 4880*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 7384*K1**2*K2 - 1648*K1**2*K3**2 - 48*K1**2*K4**2 - 3260*K1**2 - 448*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 6224*K1*K2*K3 + 1760*K1*K3*K4 + 40*K1*K4*K5 - 408*K2**4 - 176*K2**2*K3**2 - 8*K2**2*K4**2 + 568*K2**2*K4 - 3182*K2**2 + 200*K2*K3*K5 + 8*K2*K4*K6 - 1892*K3**2 - 542*K4**2 - 40*K5**2 - 2*K6**2 + 3564
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact