Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.639

Min(phi) over symmetries of the knot is: [-3,-1,0,2,2,0,2,2,4,1,0,1,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.639']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 2*K1*K2 - 2*K1 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.635', '6.639', '6.659', '6.727', '6.732', '6.735', '6.799', '6.1088', '6.1090', '6.1095', '6.1383']
Outer characteristic polynomial of the knot is: t^6+49t^4+16t^2
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.639']
2-strand cable arrow polynomial of the knot is: 96*K1**4*K2 - 1184*K1**4 - 256*K1**2*K2**4 + 704*K1**2*K2**3 - 2544*K1**2*K2**2 + 4144*K1**2*K2 - 96*K1**2*K3**2 - 2652*K1**2 + 256*K1*K2**3*K3 + 1984*K1*K2*K3 + 184*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 640*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 216*K2**2*K4 - 1400*K2**2 + 16*K2*K3*K5 - 564*K3**2 - 112*K4**2 - 8*K5**2 + 1942
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.639']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73363', 'vk6.73379', 'vk6.73525', 'vk6.73558', 'vk6.73726', 'vk6.73845', 'vk6.74258', 'vk6.74884', 'vk6.75318', 'vk6.75535', 'vk6.75845', 'vk6.76435', 'vk6.78253', 'vk6.78300', 'vk6.78505', 'vk6.78642', 'vk6.78837', 'vk6.79302', 'vk6.80074', 'vk6.80086', 'vk6.80223', 'vk6.80268', 'vk6.80400', 'vk6.80767', 'vk6.81958', 'vk6.82689', 'vk6.84749', 'vk6.85049', 'vk6.85161', 'vk6.86532', 'vk6.87346', 'vk6.89441']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U4U2O6U3U5U6
R3 orbit {'O1O2O3O4U1O5U4U2O6U3U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U2O5U3U1O6U4
Gauss code of K* O1O2O3U4U5U1U6O4U2O6O5U3
Gauss code of -K* O1O2O3U1O4O5U2O6U5U3U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 0 0 2 2],[ 3 0 2 3 1 3 1],[ 1 -2 0 1 0 3 2],[ 0 -3 -1 0 0 2 2],[ 0 -1 0 0 0 1 1],[-2 -3 -3 -2 -1 0 1],[-2 -1 -2 -2 -1 -1 0]]
Primitive based matrix [[ 0 2 2 0 -1 -3],[-2 0 1 -1 -3 -3],[-2 -1 0 -1 -2 -1],[ 0 1 1 0 0 -1],[ 1 3 2 0 0 -2],[ 3 3 1 1 2 0]]
If based matrix primitive False
Phi of primitive based matrix [-2,-2,0,1,3,-1,1,3,3,1,2,1,0,1,2]
Phi over symmetry [-3,-1,0,2,2,0,2,2,4,1,0,1,1,1,-1]
Phi of -K [-3,-1,0,2,2,0,2,2,4,1,0,1,1,1,-1]
Phi of K* [-2,-2,0,1,3,-1,1,1,4,1,0,2,1,2,0]
Phi of -K* [-3,-1,0,2,2,2,1,1,3,0,2,3,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 11z+23
Enhanced Jones-Krushkal polynomial -4w^3z+15w^2z+23w
Inner characteristic polynomial t^5+31t^3+4t
Outer characteristic polynomial t^6+49t^4+16t^2
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 2*K1*K2 - 2*K1 + 4*K2 + 5
2-strand cable arrow polynomial 96*K1**4*K2 - 1184*K1**4 - 256*K1**2*K2**4 + 704*K1**2*K2**3 - 2544*K1**2*K2**2 + 4144*K1**2*K2 - 96*K1**2*K3**2 - 2652*K1**2 + 256*K1*K2**3*K3 + 1984*K1*K2*K3 + 184*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 640*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 216*K2**2*K4 - 1400*K2**2 + 16*K2*K3*K5 - 564*K3**2 - 112*K4**2 - 8*K5**2 + 1942
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}], [{6}, {4, 5}, {3}, {1, 2}]]
If K is slice False
Contact