Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,1,3,2,3,1,1,1,1,1,1,2,1,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.636'] |
Arrow polynomial of the knot is: -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.136', '6.207', '6.342', '6.370', '6.376', '6.442', '6.456', '6.539', '6.631', '6.636', '6.674', '6.679', '6.705', '6.740', '6.760', '6.794', '6.795', '6.1369'] |
Outer characteristic polynomial of the knot is: t^7+56t^5+37t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.636'] |
2-strand cable arrow polynomial of the knot is: 96*K1**4*K2 - 1376*K1**4 + 96*K1**3*K2*K3 - 672*K1**3*K3 + 32*K1**2*K2**2*K4 - 736*K1**2*K2**2 - 160*K1**2*K2*K4 + 3336*K1**2*K2 - 416*K1**2*K3**2 - 64*K1**2*K4**2 - 2064*K1**2 - 32*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 2264*K1*K2*K3 + 448*K1*K3*K4 + 56*K1*K4*K5 - 16*K2**4 - 32*K2**2*K3**2 - 8*K2**2*K4**2 + 184*K2**2*K4 - 1638*K2**2 + 48*K2*K3*K5 + 8*K2*K4*K6 - 744*K3**2 - 160*K4**2 - 16*K5**2 - 2*K6**2 + 1630 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.636'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11006', 'vk6.11087', 'vk6.12174', 'vk6.12283', 'vk6.18203', 'vk6.18540', 'vk6.24661', 'vk6.25087', 'vk6.30569', 'vk6.30666', 'vk6.31841', 'vk6.31890', 'vk6.36791', 'vk6.37245', 'vk6.44032', 'vk6.44374', 'vk6.51817', 'vk6.51886', 'vk6.52683', 'vk6.52779', 'vk6.56009', 'vk6.56284', 'vk6.60548', 'vk6.60890', 'vk6.63495', 'vk6.63541', 'vk6.63975', 'vk6.64021', 'vk6.65668', 'vk6.65954', 'vk6.68714', 'vk6.68924', 'vk6.83170', 'vk6.83588', 'vk6.84138', 'vk6.84331', 'vk6.86469', 'vk6.86483', 'vk6.88739', 'vk6.88906'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is
|
The fillings (up to the first 10) associated to the algebraic genus:
|
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1O5U3U5O6U2U4U6 |
R3 orbit | {'O1O2O3O4U1O5U3U5O6U2U4U6', 'O1O2O3O4U5U2O6U4U1U3O5U6'} |
R3 orbit length | 2 |
Gauss code of -K | O1O2O3O4U5U1U3O5U6U2O6U4 |
Gauss code of K* | O1O2O3U4U1U5U2O4U6O5O6U3 |
Gauss code of -K* | O1O2O3U1O4O5U4O6U2U5U3U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 -1 2 1 2],[ 3 0 2 1 3 1 2],[ 1 -2 0 -1 2 1 2],[ 1 -1 1 0 2 1 1],[-2 -3 -2 -2 0 0 1],[-1 -1 -1 -1 0 0 0],[-2 -2 -2 -1 -1 0 0]] |
Primitive based matrix | [[ 0 2 2 1 -1 -1 -3],[-2 0 1 0 -2 -2 -3],[-2 -1 0 0 -1 -2 -2],[-1 0 0 0 -1 -1 -1],[ 1 2 1 1 0 1 -1],[ 1 2 2 1 -1 0 -2],[ 3 3 2 1 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,1,1,3,-1,0,2,2,3,0,1,2,2,1,1,1,-1,1,2] |
Phi over symmetry | [-3,-1,-1,1,2,2,0,1,3,2,3,1,1,1,1,1,1,2,1,1,-1] |
Phi of -K | [-3,-1,-1,1,2,2,0,1,3,2,3,1,1,1,1,1,1,2,1,1,-1] |
Phi of K* | [-2,-2,-1,1,1,3,-1,1,1,2,3,1,1,1,2,1,1,3,-1,0,1] |
Phi of -K* | [-3,-1,-1,1,2,2,1,2,1,2,3,1,1,1,2,1,2,2,0,0,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | z^2+14z+25 |
Enhanced Jones-Krushkal polynomial | w^3z^2+14w^2z+25w |
Inner characteristic polynomial | t^6+36t^4+17t^2+1 |
Outer characteristic polynomial | t^7+56t^5+37t^3+4t |
Flat arrow polynomial | -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial | 96*K1**4*K2 - 1376*K1**4 + 96*K1**3*K2*K3 - 672*K1**3*K3 + 32*K1**2*K2**2*K4 - 736*K1**2*K2**2 - 160*K1**2*K2*K4 + 3336*K1**2*K2 - 416*K1**2*K3**2 - 64*K1**2*K4**2 - 2064*K1**2 - 32*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 2264*K1*K2*K3 + 448*K1*K3*K4 + 56*K1*K4*K5 - 16*K2**4 - 32*K2**2*K3**2 - 8*K2**2*K4**2 + 184*K2**2*K4 - 1638*K2**2 + 48*K2*K3*K5 + 8*K2*K4*K6 - 744*K3**2 - 160*K4**2 - 16*K5**2 - 2*K6**2 + 1630 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {4}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {4}, {2, 3}, {1}], [{6}, {1, 5}, {4}, {2, 3}]] |
If K is slice | False |