Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.627

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,1,3,2,0,1,2,2,0,0,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.627']
Arrow polynomial of the knot is: 8*K1**3 - 10*K1**2 - 6*K1*K2 - 3*K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.576', '6.581', '6.622', '6.627', '6.983', '6.1017']
Outer characteristic polynomial of the knot is: t^7+48t^5+90t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.627']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 2144*K1**4*K2 - 4560*K1**4 + 576*K1**3*K2*K3 - 1280*K1**3*K3 + 960*K1**2*K2**3 - 7008*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 448*K1**2*K2*K4 + 11704*K1**2*K2 - 592*K1**2*K3**2 - 32*K1**2*K3*K5 - 80*K1**2*K4**2 - 6596*K1**2 + 416*K1*K2**3*K3 - 1920*K1*K2**2*K3 - 288*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7936*K1*K2*K3 - 32*K1*K2*K4*K5 + 1392*K1*K3*K4 + 160*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 + 96*K2**4*K4 - 1352*K2**4 - 32*K2**3*K6 - 352*K2**2*K3**2 - 40*K2**2*K4**2 + 1784*K2**2*K4 - 5170*K2**2 + 352*K2*K3*K5 + 40*K2*K4*K6 - 2288*K3**2 - 698*K4**2 - 108*K5**2 - 6*K6**2 + 5440
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.627']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11527', 'vk6.11858', 'vk6.12877', 'vk6.13184', 'vk6.20362', 'vk6.21704', 'vk6.27665', 'vk6.29210', 'vk6.31298', 'vk6.31693', 'vk6.32456', 'vk6.32871', 'vk6.39097', 'vk6.41351', 'vk6.45853', 'vk6.47515', 'vk6.52298', 'vk6.52562', 'vk6.53142', 'vk6.53446', 'vk6.57221', 'vk6.58443', 'vk6.61834', 'vk6.62967', 'vk6.63803', 'vk6.63935', 'vk6.64249', 'vk6.64445', 'vk6.66828', 'vk6.67697', 'vk6.69467', 'vk6.70190']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U3O5U1U6U4U2
R3 orbit {'O1O2O3O4U5O6U3O5U1U6U4U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3U1U5U4O6U2O5U6
Gauss code of K* O1O2O3O4U1U4U5U3O6U2O5U6
Gauss code of -K* O1O2O3O4U5O6U3O5U2U6U1U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 -1 2 0 1],[ 3 0 3 1 3 2 1],[-1 -3 0 -1 1 -1 0],[ 1 -1 1 0 1 1 0],[-2 -3 -1 -1 0 -1 -1],[ 0 -2 1 -1 1 0 1],[-1 -1 0 0 1 -1 0]]
Primitive based matrix [[ 0 2 1 1 0 -1 -3],[-2 0 -1 -1 -1 -1 -3],[-1 1 0 0 -1 0 -1],[-1 1 0 0 -1 -1 -3],[ 0 1 1 1 0 -1 -2],[ 1 1 0 1 1 0 -1],[ 3 3 1 3 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,1,3,1,1,1,1,3,0,1,0,1,1,1,3,1,2,1]
Phi over symmetry [-3,-1,0,1,1,2,1,1,1,3,2,0,1,2,2,0,0,1,0,0,0]
Phi of -K [-3,-1,0,1,1,2,1,1,1,3,2,0,1,2,2,0,0,1,0,0,0]
Phi of K* [-2,-1,-1,0,1,3,0,0,1,2,2,0,0,1,1,0,2,3,0,1,1]
Phi of -K* [-3,-1,0,1,1,2,1,2,1,3,3,1,0,1,1,1,1,1,0,1,1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+32t^4+49t^2
Outer characteristic polynomial t^7+48t^5+90t^3+7t
Flat arrow polynomial 8*K1**3 - 10*K1**2 - 6*K1*K2 - 3*K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -64*K1**6 + 2144*K1**4*K2 - 4560*K1**4 + 576*K1**3*K2*K3 - 1280*K1**3*K3 + 960*K1**2*K2**3 - 7008*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 448*K1**2*K2*K4 + 11704*K1**2*K2 - 592*K1**2*K3**2 - 32*K1**2*K3*K5 - 80*K1**2*K4**2 - 6596*K1**2 + 416*K1*K2**3*K3 - 1920*K1*K2**2*K3 - 288*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7936*K1*K2*K3 - 32*K1*K2*K4*K5 + 1392*K1*K3*K4 + 160*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 + 96*K2**4*K4 - 1352*K2**4 - 32*K2**3*K6 - 352*K2**2*K3**2 - 40*K2**2*K4**2 + 1784*K2**2*K4 - 5170*K2**2 + 352*K2*K3*K5 + 40*K2*K4*K6 - 2288*K3**2 - 698*K4**2 - 108*K5**2 - 6*K6**2 + 5440
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact