Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,1,3,2,1,1,1,1,1,1,2,-1,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.607'] |
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.2', '6.303', '6.338', '6.381', '6.432', '6.468', '6.558', '6.583', '6.597', '6.607', '6.634', '6.637', '6.643', '6.654', '6.667', '6.701', '6.709', '6.712', '6.718', '6.728', '6.767', '6.801', '6.825', '6.827', '6.974', '6.994', '6.1042', '6.1061', '6.1069', '6.1181', '6.1271', '6.1286', '6.1287', '6.1289', '6.1297', '6.1337', '6.1355'] |
Outer characteristic polynomial of the knot is: t^7+46t^5+33t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.607'] |
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 2880*K1**4*K2 - 6016*K1**4 + 800*K1**3*K2*K3 - 1344*K1**3*K3 - 128*K1**2*K2**4 + 896*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7184*K1**2*K2**2 - 480*K1**2*K2*K4 + 9720*K1**2*K2 - 608*K1**2*K3**2 - 32*K1**2*K4**2 - 2940*K1**2 + 224*K1*K2**3*K3 - 672*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 5632*K1*K2*K3 + 472*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 632*K2**4 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 464*K2**2*K4 - 2920*K2**2 + 24*K2*K3*K5 - 1068*K3**2 - 94*K4**2 + 3188 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.607'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13926', 'vk6.14021', 'vk6.14192', 'vk6.14433', 'vk6.14993', 'vk6.15114', 'vk6.15664', 'vk6.16120', 'vk6.16703', 'vk6.16728', 'vk6.16834', 'vk6.18801', 'vk6.19289', 'vk6.19583', 'vk6.23141', 'vk6.23219', 'vk6.25395', 'vk6.26480', 'vk6.33737', 'vk6.33812', 'vk6.34287', 'vk6.35131', 'vk6.37520', 'vk6.42718', 'vk6.44702', 'vk6.54127', 'vk6.54920', 'vk6.54947', 'vk6.56395', 'vk6.56614', 'vk6.59348', 'vk6.64598'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U3O5U1O6U4U6U5U2 |
R3 orbit | {'O1O2O3O4U3O5U1O6U4U6U5U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U3U5U6U1O6U4O5U2 |
Gauss code of K* | O1O2O3O4U5U4U6U1O6U3O5U2 |
Gauss code of -K* | O1O2O3O4U3O5U2O6U4U6U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 1 -1 0 2 1],[ 3 0 3 0 2 2 1],[-1 -3 0 -1 -1 1 1],[ 1 0 1 0 1 1 1],[ 0 -2 1 -1 0 2 1],[-2 -2 -1 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix | [[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -2 -1 -2],[-1 0 0 -1 -1 -1 -1],[-1 1 1 0 -1 -1 -3],[ 0 2 1 1 0 -1 -2],[ 1 1 1 1 1 0 0],[ 3 2 1 3 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,0,1,3,0,1,2,1,2,1,1,1,1,1,1,3,1,2,0] |
Phi over symmetry | [-3,-1,0,1,1,2,0,2,1,3,2,1,1,1,1,1,1,2,-1,0,1] |
Phi of -K | [-3,-1,0,1,1,2,2,1,1,3,3,0,1,1,2,0,0,0,-1,0,1] |
Phi of K* | [-2,-1,-1,0,1,3,0,1,0,2,3,1,0,1,1,0,1,3,0,1,2] |
Phi of -K* | [-3,-1,0,1,1,2,0,2,1,3,2,1,1,1,1,1,1,2,-1,0,1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 7z^2+28z+29 |
Enhanced Jones-Krushkal polynomial | 7w^3z^2+28w^2z+29w |
Inner characteristic polynomial | t^6+30t^4+16t^2+1 |
Outer characteristic polynomial | t^7+46t^5+33t^3+5t |
Flat arrow polynomial | 4*K1**3 - 2*K1**2 - 2*K1*K2 - 2*K1 + K2 + 2 |
2-strand cable arrow polynomial | -128*K1**4*K2**2 + 2880*K1**4*K2 - 6016*K1**4 + 800*K1**3*K2*K3 - 1344*K1**3*K3 - 128*K1**2*K2**4 + 896*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7184*K1**2*K2**2 - 480*K1**2*K2*K4 + 9720*K1**2*K2 - 608*K1**2*K3**2 - 32*K1**2*K4**2 - 2940*K1**2 + 224*K1*K2**3*K3 - 672*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 5632*K1*K2*K3 + 472*K1*K3*K4 + 16*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 632*K2**4 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 464*K2**2*K4 - 2920*K2**2 + 24*K2*K3*K5 - 1068*K3**2 - 94*K4**2 + 3188 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}]] |
If K is slice | False |