Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.59

Min(phi) over symmetries of the knot is: [-4,-4,-1,3,3,3,0,1,2,3,4,2,3,4,5,1,2,3,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.59']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+158t^5+336t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.59']
2-strand cable arrow polynomial of the knot is: -128*K1**2*K4**2 - 680*K1**2 + 96*K1*K2*K3 + 64*K1*K3*K4**3 + 1488*K1*K3*K4 + 48*K1*K4*K5 - 8*K2**2*K4**2 + 8*K2**2*K4 - 70*K2**2 + 40*K2*K4*K6 - 384*K3**2*K4**2 - 712*K3**2 + 240*K3*K4*K7 - 32*K4**4 - 652*K4**2 - 18*K6**2 - 32*K7**2 + 730
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.59']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.81847', 'vk6.81900', 'vk6.82072', 'vk6.82096', 'vk6.82780', 'vk6.82791', 'vk6.82850', 'vk6.82954', 'vk6.83291', 'vk6.83396', 'vk6.83458', 'vk6.84549', 'vk6.84650', 'vk6.84772', 'vk6.84789', 'vk6.86272', 'vk6.86848', 'vk6.88466', 'vk6.88551', 'vk6.90030']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is +.
The reverse -K is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5O6U2U1U3U6U5U4
R3 orbit {'O1O2O3O4O5O6U2U1U3U6U5U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5O6U3U2U1U4U6U5
Gauss code of K* Same
Gauss code of -K* O1O2O3O4O5O6U3U2U1U4U6U5
Diagrammatic symmetry type +
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -4 -1 3 3 3],[ 4 0 0 2 5 4 3],[ 4 0 0 1 4 3 2],[ 1 -2 -1 0 3 2 1],[-3 -5 -4 -3 0 0 0],[-3 -4 -3 -2 0 0 0],[-3 -3 -2 -1 0 0 0]]
Primitive based matrix [[ 0 3 3 3 -1 -4 -4],[-3 0 0 0 -1 -2 -3],[-3 0 0 0 -2 -3 -4],[-3 0 0 0 -3 -4 -5],[ 1 1 2 3 0 -1 -2],[ 4 2 3 4 1 0 0],[ 4 3 4 5 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-3,-3,1,4,4,0,0,1,2,3,0,2,3,4,3,4,5,1,2,0]
Phi over symmetry [-4,-4,-1,3,3,3,0,1,2,3,4,2,3,4,5,1,2,3,0,0,0]
Phi of -K [-4,-4,-1,3,3,3,0,1,2,3,4,2,3,4,5,1,2,3,0,0,0]
Phi of K* [-3,-3,-3,1,4,4,0,0,1,2,3,0,2,3,4,3,4,5,1,2,0]
Phi of -K* [-4,-4,-1,3,3,3,0,1,2,3,4,2,3,4,5,1,2,3,0,0,0]
Symmetry type of based matrix +
u-polynomial 2t^4-3t^3+t
Normalized Jones-Krushkal polynomial z+3
Enhanced Jones-Krushkal polynomial -8w^5z+16w^4z-14w^3z+4w^3+7w^2z-w
Inner characteristic polynomial t^6+98t^4+50t^2
Outer characteristic polynomial t^7+158t^5+336t^3
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial -128*K1**2*K4**2 - 680*K1**2 + 96*K1*K2*K3 + 64*K1*K3*K4**3 + 1488*K1*K3*K4 + 48*K1*K4*K5 - 8*K2**2*K4**2 + 8*K2**2*K4 - 70*K2**2 + 40*K2*K4*K6 - 384*K3**2*K4**2 - 712*K3**2 + 240*K3*K4*K7 - 32*K4**4 - 652*K4**2 - 18*K6**2 - 32*K7**2 + 730
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {3}, {1, 2}]]
If K is slice False
Contact