Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.580

Min(phi) over symmetries of the knot is: [-3,-1,0,0,1,3,0,0,2,2,4,0,1,0,2,1,-1,0,0,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.580']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+68t^5+87t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.580']
2-strand cable arrow polynomial of the knot is: 224*K1**4*K2 - 608*K1**4 - 96*K1**3*K3 + 160*K1**2*K2**3 - 3408*K1**2*K2**2 - 32*K1**2*K2*K4 + 5384*K1**2*K2 - 4376*K1**2 + 128*K1*K2**3*K3 - 160*K1*K2**2*K3 - 32*K1*K2**2*K5 + 3968*K1*K2*K3 + 176*K1*K3*K4 + 8*K1*K4*K5 - 320*K2**6 + 192*K2**4*K4 - 2480*K2**4 - 336*K2**2*K3**2 - 64*K2**2*K4**2 + 2080*K2**2*K4 - 2276*K2**2 + 232*K2*K3*K5 + 32*K2*K4*K6 - 1188*K3**2 - 452*K4**2 - 44*K5**2 - 4*K6**2 + 3290
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.580']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73773', 'vk6.73776', 'vk6.73796', 'vk6.73801', 'vk6.73911', 'vk6.73913', 'vk6.73930', 'vk6.73937', 'vk6.75739', 'vk6.75744', 'vk6.75911', 'vk6.75912', 'vk6.78706', 'vk6.78715', 'vk6.78750', 'vk6.78753', 'vk6.78905', 'vk6.78917', 'vk6.80327', 'vk6.80334', 'vk6.80352', 'vk6.80354', 'vk6.80450', 'vk6.80456', 'vk6.81713', 'vk6.81722', 'vk6.82488', 'vk6.82494', 'vk6.84452', 'vk6.84460', 'vk6.88343', 'vk6.88354']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U3O6U5U4U2U6
R3 orbit {'O1O2O3O4U1O5U3O6U5U4U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U3U1U6O5U2O6U4
Gauss code of K* O1O2O3O4U5U3U6U2O5U1O6U4
Gauss code of -K* O1O2O3O4U1O5U4O6U3U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 -1 1 0 3],[ 3 0 3 1 2 1 2],[ 0 -3 0 -2 1 1 3],[ 1 -1 2 0 2 1 2],[-1 -2 -1 -2 0 0 2],[ 0 -1 -1 -1 0 0 1],[-3 -2 -3 -2 -2 -1 0]]
Primitive based matrix [[ 0 3 1 0 0 -1 -3],[-3 0 -2 -1 -3 -2 -2],[-1 2 0 0 -1 -2 -2],[ 0 1 0 0 -1 -1 -1],[ 0 3 1 1 0 -2 -3],[ 1 2 2 1 2 0 -1],[ 3 2 2 1 3 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,0,1,3,2,1,3,2,2,0,1,2,2,1,1,1,2,3,1]
Phi over symmetry [-3,-1,0,0,1,3,0,0,2,2,4,0,1,0,2,1,-1,0,0,2,1]
Phi of -K [-3,-1,0,0,1,3,1,0,2,2,4,-1,0,0,2,-1,0,0,1,2,0]
Phi of K* [-3,-1,0,0,1,3,0,0,2,2,4,0,1,0,2,1,-1,0,0,2,1]
Phi of -K* [-3,-1,0,0,1,3,1,1,3,2,2,1,2,2,2,-1,0,1,1,3,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 2z^2+15z+23
Enhanced Jones-Krushkal polynomial -2w^4z^2+4w^3z^2-8w^3z+23w^2z+23w
Inner characteristic polynomial t^6+48t^4+19t^2+1
Outer characteristic polynomial t^7+68t^5+87t^3+16t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial 224*K1**4*K2 - 608*K1**4 - 96*K1**3*K3 + 160*K1**2*K2**3 - 3408*K1**2*K2**2 - 32*K1**2*K2*K4 + 5384*K1**2*K2 - 4376*K1**2 + 128*K1*K2**3*K3 - 160*K1*K2**2*K3 - 32*K1*K2**2*K5 + 3968*K1*K2*K3 + 176*K1*K3*K4 + 8*K1*K4*K5 - 320*K2**6 + 192*K2**4*K4 - 2480*K2**4 - 336*K2**2*K3**2 - 64*K2**2*K4**2 + 2080*K2**2*K4 - 2276*K2**2 + 232*K2*K3*K5 + 32*K2*K4*K6 - 1188*K3**2 - 452*K4**2 - 44*K5**2 - 4*K6**2 + 3290
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}]]
If K is slice False
Contact