Gauss code |
O1O2O3O4U1O5U2O6U5U6U4U3 |
R3 orbit |
{'O1O2O3O4U1O5U2O6U5U6U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U1U5U6O5U3O6U4 |
Gauss code of K* |
O1O2O3O4U5U6U4U3O5U1O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5U4O6U2U1U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 2 2 0 1],[ 3 0 1 3 2 1 0],[ 2 -1 0 3 2 1 1],[-2 -3 -3 0 0 -1 1],[-2 -2 -2 0 0 -1 1],[ 0 -1 -1 1 1 0 1],[-1 0 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 1 0 -2 -3],[-2 0 0 1 -1 -2 -2],[-2 0 0 1 -1 -3 -3],[-1 -1 -1 0 -1 -1 0],[ 0 1 1 1 0 -1 -1],[ 2 2 3 1 1 0 -1],[ 3 2 3 0 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,0,2,3,0,-1,1,2,2,-1,1,3,3,1,1,0,1,1,1] |
Phi over symmetry |
[-3,-2,0,1,2,2,0,2,4,2,3,1,2,1,2,0,1,1,2,2,0] |
Phi of -K |
[-3,-2,0,1,2,2,0,2,4,2,3,1,2,1,2,0,1,1,2,2,0] |
Phi of K* |
[-2,-2,-1,0,2,3,0,2,1,1,2,2,1,2,3,0,2,4,1,2,0] |
Phi of -K* |
[-3,-2,0,1,2,2,1,1,0,2,3,1,1,2,3,1,1,1,-1,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+24w^2z+29w |
Inner characteristic polynomial |
t^6+35t^4+17t^2+1 |
Outer characteristic polynomial |
t^7+57t^5+46t^3+6t |
Flat arrow polynomial |
-2*K1**2 - 6*K1*K2 + 3*K1 + K2 + 3*K3 + 2 |
2-strand cable arrow polynomial |
352*K1**4*K2 - 2128*K1**4 + 608*K1**3*K2*K3 + 32*K1**3*K3*K4 - 2272*K1**3*K3 - 1584*K1**2*K2**2 - 512*K1**2*K2*K4 + 6464*K1**2*K2 - 1024*K1**2*K3**2 - 64*K1**2*K3*K5 - 48*K1**2*K4**2 - 4892*K1**2 + 128*K1*K2**3*K3 - 96*K1*K2**2*K3 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 5768*K1*K2*K3 - 32*K1*K3**2*K5 + 1424*K1*K3*K4 + 200*K1*K4*K5 + 8*K1*K5*K6 - 72*K2**4 - 192*K2**2*K3**2 - 24*K2**2*K4**2 + 464*K2**2*K4 - 3406*K2**2 + 256*K2*K3*K5 + 40*K2*K4*K6 - 16*K3**4 + 16*K3**2*K6 - 2136*K3**2 - 638*K4**2 - 132*K5**2 - 18*K6**2 + 3652 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |