Gauss code |
O1O2O3O4U1O5U2O6U4U6U5U3 |
R3 orbit |
{'O1O2O3O4U1O5U2O6U4U6U5U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U5U6U1O6U3O5U4 |
Gauss code of K* |
O1O2O3O4U5U6U4U1O5U3O6U2 |
Gauss code of -K* |
O1O2O3O4U3O5U2O6U4U1U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 2 0 2 1],[ 3 0 1 3 2 2 1],[ 2 -1 0 3 1 2 1],[-2 -3 -3 0 -2 1 1],[ 0 -2 -1 2 0 2 1],[-2 -2 -2 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 0 -2 -3],[-2 0 1 1 -2 -3 -3],[-2 -1 0 0 -2 -2 -2],[-1 -1 0 0 -1 -1 -1],[ 0 2 2 1 0 -1 -2],[ 2 3 2 1 1 0 -1],[ 3 3 2 1 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,0,2,3,-1,-1,2,3,3,0,2,2,2,1,1,1,1,2,1] |
Phi over symmetry |
[-3,-2,0,1,2,2,0,1,3,2,3,1,2,1,2,0,0,0,2,1,-1] |
Phi of -K |
[-3,-2,0,1,2,2,0,1,3,2,3,1,2,1,2,0,0,0,2,1,-1] |
Phi of K* |
[-2,-2,-1,0,2,3,-1,1,0,2,3,2,0,1,2,0,2,3,1,1,0] |
Phi of -K* |
[-3,-2,0,1,2,2,1,2,1,2,3,1,1,2,3,1,2,2,0,-1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
z^2+18z+33 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+18w^2z+33w |
Inner characteristic polynomial |
t^6+45t^4+8t^2 |
Outer characteristic polynomial |
t^7+67t^5+35t^3+4t |
Flat arrow polynomial |
-10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-64*K1**6 + 192*K1**4*K2 - 3216*K1**4 - 736*K1**3*K3 + 32*K1**2*K2**3 - 3616*K1**2*K2**2 - 288*K1**2*K2*K4 + 8232*K1**2*K2 - 464*K1**2*K3**2 - 48*K1**2*K4**2 - 4372*K1**2 - 224*K1*K2**2*K3 - 32*K1*K2**2*K5 + 5304*K1*K2*K3 + 808*K1*K3*K4 + 64*K1*K4*K5 - 504*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 640*K2**2*K4 - 3446*K2**2 + 112*K2*K3*K5 + 8*K2*K4*K6 - 1544*K3**2 - 358*K4**2 - 44*K5**2 - 2*K6**2 + 3668 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |