Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.571

Min(phi) over symmetries of the knot is: [-3,-2,-1,1,2,3,-1,1,1,2,4,1,1,1,2,1,1,2,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.571', '7.17898']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+92t^5+41t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.571']
2-strand cable arrow polynomial of the knot is: 32*K1**4*K2 - 784*K1**4 + 32*K1**3*K2*K3 + 32*K1**3*K3*K4 - 992*K1**3*K3 - 448*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 224*K1**2*K2*K4 + 4680*K1**2*K2 - 848*K1**2*K3**2 - 64*K1**2*K3*K5 - 80*K1**2*K4**2 - 4904*K1**2 + 96*K1*K2**3*K3 - 800*K1*K2**2*K3 + 32*K1*K2*K3**3 - 128*K1*K2*K3*K4 + 4792*K1*K2*K3 + 1424*K1*K3*K4 + 96*K1*K4*K5 - 80*K2**4 - 320*K2**2*K3**2 - 16*K2**2*K4**2 + 576*K2**2*K4 - 3412*K2**2 + 168*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 + 8*K3**2*K6 - 1988*K3**2 - 552*K4**2 - 36*K5**2 - 4*K6**2 + 3470
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.571']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.81565', 'vk6.81579', 'vk6.81647', 'vk6.81661', 'vk6.81728', 'vk6.81740', 'vk6.81859', 'vk6.81865', 'vk6.82233', 'vk6.82247', 'vk6.82385', 'vk6.82395', 'vk6.82501', 'vk6.82511', 'vk6.82576', 'vk6.82583', 'vk6.83176', 'vk6.83181', 'vk6.83602', 'vk6.83609', 'vk6.84131', 'vk6.84143', 'vk6.84334', 'vk6.84348', 'vk6.84565', 'vk6.84569', 'vk6.86489', 'vk6.86495', 'vk6.88734', 'vk6.88744', 'vk6.88905', 'vk6.88920']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U2O6U3U5U4U6
R3 orbit {'O1O2O3O4U1O5U2O6U3U5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U6U2O5U3O6U4
Gauss code of K* O1O2O3O4U5U6U1U3O5U2O6U4
Gauss code of -K* O1O2O3O4U1O5U3O6U2U4U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 -1 2 1 3],[ 3 0 1 2 3 2 2],[ 2 -1 0 1 3 2 3],[ 1 -2 -1 0 2 1 3],[-2 -3 -3 -2 0 0 2],[-1 -2 -2 -1 0 0 1],[-3 -2 -3 -3 -2 -1 0]]
Primitive based matrix [[ 0 3 2 1 -1 -2 -3],[-3 0 -2 -1 -3 -3 -2],[-2 2 0 0 -2 -3 -3],[-1 1 0 0 -1 -2 -2],[ 1 3 2 1 0 -1 -2],[ 2 3 3 2 1 0 -1],[ 3 2 3 2 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,1,2,3,2,1,3,3,2,0,2,3,3,1,2,2,1,2,1]
Phi over symmetry [-3,-2,-1,1,2,3,-1,1,1,2,4,1,1,1,2,1,1,2,0,0,0]
Phi of -K [-3,-2,-1,1,2,3,0,0,2,2,4,0,1,1,2,1,1,1,1,1,-1]
Phi of K* [-3,-2,-1,1,2,3,-1,1,1,2,4,1,1,1,2,1,1,2,0,0,0]
Phi of -K* [-3,-2,-1,1,2,3,1,2,2,3,2,1,2,3,3,1,2,3,0,1,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+20z+29
Enhanced Jones-Krushkal polynomial 3w^3z^2+20w^2z+29w
Inner characteristic polynomial t^6+64t^4+19t^2
Outer characteristic polynomial t^7+92t^5+41t^3+4t
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial 32*K1**4*K2 - 784*K1**4 + 32*K1**3*K2*K3 + 32*K1**3*K3*K4 - 992*K1**3*K3 - 448*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 224*K1**2*K2*K4 + 4680*K1**2*K2 - 848*K1**2*K3**2 - 64*K1**2*K3*K5 - 80*K1**2*K4**2 - 4904*K1**2 + 96*K1*K2**3*K3 - 800*K1*K2**2*K3 + 32*K1*K2*K3**3 - 128*K1*K2*K3*K4 + 4792*K1*K2*K3 + 1424*K1*K3*K4 + 96*K1*K4*K5 - 80*K2**4 - 320*K2**2*K3**2 - 16*K2**2*K4**2 + 576*K2**2*K4 - 3412*K2**2 + 168*K2*K3*K5 + 16*K2*K4*K6 - 32*K3**4 + 8*K3**2*K6 - 1988*K3**2 - 552*K4**2 - 36*K5**2 - 4*K6**2 + 3470
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {5}, {1, 4}, {2}]]
If K is slice False
Contact