Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,0,0,0,1,2,1,2,2,2,0,-1,-1,-1,-1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.566'] |
Arrow polynomial of the knot is: 4*K1**2*K2 - 4*K1*K3 + K4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.111', '6.139', '6.519', '6.566', '6.1228', '6.1254', '6.1259', '6.1912', '6.1936'] |
Outer characteristic polynomial of the knot is: t^7+34t^5+71t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.549', '6.566'] |
2-strand cable arrow polynomial of the knot is: 1024*K1**4*K2 - 1344*K1**4 - 384*K1**3*K2**2*K3 + 512*K1**3*K2*K3 - 576*K1**3*K3 + 960*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3552*K1**2*K2**2 + 768*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 4368*K1**2*K2 - 1152*K1**2*K3**2 - 384*K1**2*K3*K5 - 96*K1**2*K4**2 - 2880*K1**2 + 416*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1952*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 320*K1*K2**2*K5 - 800*K1*K2*K3*K4 + 5048*K1*K2*K3 - 192*K1*K2*K4*K5 - 32*K1*K2*K4*K7 - 64*K1*K2*K5*K6 + 2128*K1*K3*K4 + 544*K1*K4*K5 + 48*K1*K5*K6 + 24*K1*K6*K7 - 32*K2**4*K4**2 + 128*K2**4*K4 - 976*K2**4 + 32*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 928*K2**2*K3**2 - 32*K2**2*K3*K7 - 288*K2**2*K4**2 - 32*K2**2*K4*K8 + 1696*K2**2*K4 - 64*K2**2*K5**2 - 16*K2**2*K6**2 - 2328*K2**2 - 32*K2*K3**2*K4 + 992*K2*K3*K5 + 256*K2*K4*K6 + 72*K2*K5*K7 + 16*K2*K6*K8 + 8*K3**2*K6 - 1512*K3**2 - 824*K4**2 - 280*K5**2 - 56*K6**2 - 16*K7**2 - 2*K8**2 + 2456 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.566'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4804', 'vk6.4814', 'vk6.5142', 'vk6.5158', 'vk6.6363', 'vk6.6799', 'vk6.6805', 'vk6.8329', 'vk6.8335', 'vk6.8771', 'vk6.9704', 'vk6.9706', 'vk6.10010', 'vk6.10012', 'vk6.21100', 'vk6.21107', 'vk6.22530', 'vk6.22539', 'vk6.28547', 'vk6.42195', 'vk6.46822', 'vk6.46829', 'vk6.48059', 'vk6.48068', 'vk6.48820', 'vk6.49865', 'vk6.49871', 'vk6.50834', 'vk6.50836', 'vk6.51518', 'vk6.58984', 'vk6.69820'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U4U3U5O6U2U1U6 |
R3 orbit | {'O1O2O3O4O5U4U3U5O6U2U1U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U6U5U4O6U1U3U2 |
Gauss code of K* | O1O2O3U4O5O6O4U6U5U2U1U3 |
Gauss code of -K* | O1O2O3U1O4O5O6U4U6U5U3U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 -1 -1 -1 2 2],[ 1 0 0 -1 -1 2 2],[ 1 0 0 -1 -1 2 1],[ 1 1 1 0 0 2 0],[ 1 1 1 0 0 1 0],[-2 -2 -2 -2 -1 0 0],[-2 -2 -1 0 0 0 0]] |
Primitive based matrix | [[ 0 2 2 -1 -1 -1 -1],[-2 0 0 0 0 -1 -2],[-2 0 0 -1 -2 -2 -2],[ 1 0 1 0 0 1 1],[ 1 0 2 0 0 1 1],[ 1 1 2 -1 -1 0 0],[ 1 2 2 -1 -1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,1,1,1,1,0,0,0,1,2,1,2,2,2,0,-1,-1,-1,-1,0] |
Phi over symmetry | [-2,-2,1,1,1,1,0,0,0,1,2,1,2,2,2,0,-1,-1,-1,-1,0] |
Phi of -K | [-1,-1,-1,-1,2,2,-1,-1,0,1,3,0,1,1,1,1,1,2,2,3,0] |
Phi of K* | [-2,-2,1,1,1,1,0,1,1,1,2,1,2,3,3,0,-1,-1,-1,-1,0] |
Phi of -K* | [-1,-1,-1,-1,2,2,-1,-1,0,1,2,0,1,0,1,1,0,2,2,2,0] |
Symmetry type of based matrix | c |
u-polynomial | -2t^2+4t |
Normalized Jones-Krushkal polynomial | 9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial | 9w^3z^2+30w^2z+25w |
Inner characteristic polynomial | t^6+22t^4+33t^2+1 |
Outer characteristic polynomial | t^7+34t^5+71t^3+7t |
Flat arrow polynomial | 4*K1**2*K2 - 4*K1*K3 + K4 |
2-strand cable arrow polynomial | 1024*K1**4*K2 - 1344*K1**4 - 384*K1**3*K2**2*K3 + 512*K1**3*K2*K3 - 576*K1**3*K3 + 960*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3552*K1**2*K2**2 + 768*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 4368*K1**2*K2 - 1152*K1**2*K3**2 - 384*K1**2*K3*K5 - 96*K1**2*K4**2 - 2880*K1**2 + 416*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1952*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 320*K1*K2**2*K5 - 800*K1*K2*K3*K4 + 5048*K1*K2*K3 - 192*K1*K2*K4*K5 - 32*K1*K2*K4*K7 - 64*K1*K2*K5*K6 + 2128*K1*K3*K4 + 544*K1*K4*K5 + 48*K1*K5*K6 + 24*K1*K6*K7 - 32*K2**4*K4**2 + 128*K2**4*K4 - 976*K2**4 + 32*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 928*K2**2*K3**2 - 32*K2**2*K3*K7 - 288*K2**2*K4**2 - 32*K2**2*K4*K8 + 1696*K2**2*K4 - 64*K2**2*K5**2 - 16*K2**2*K6**2 - 2328*K2**2 - 32*K2*K3**2*K4 + 992*K2*K3*K5 + 256*K2*K4*K6 + 72*K2*K5*K7 + 16*K2*K6*K8 + 8*K3**2*K6 - 1512*K3**2 - 824*K4**2 - 280*K5**2 - 56*K6**2 - 16*K7**2 - 2*K8**2 + 2456 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{5, 6}, {1, 4}, {2, 3}]] |
If K is slice | False |