Gauss code |
O1O2O3O4O5O6U1U6U5U4U3U2 |
R3 orbit |
{'O1O2O3O4O5O6U1U6U5U4U3U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U4U3U2U1U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U5U4U3U2U1U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 1 1 1 1 1],[ 5 0 5 4 3 2 1],[-1 -5 0 0 0 0 0],[-1 -4 0 0 0 0 0],[-1 -3 0 0 0 0 0],[-1 -2 0 0 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 1 1 1 1 1 -5],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 0 -2],[-1 0 0 0 0 0 -3],[-1 0 0 0 0 0 -4],[-1 0 0 0 0 0 -5],[ 5 1 2 3 4 5 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,-1,-1,5,0,0,0,0,1,0,0,0,2,0,0,3,0,4,5] |
Phi over symmetry |
[-5,1,1,1,1,1,1,2,3,4,5,0,0,0,0,0,0,0,0,0,0] |
Phi of -K |
[-5,1,1,1,1,1,1,2,3,4,5,0,0,0,0,0,0,0,0,0,0] |
Phi of K* |
[-1,-1,-1,-1,-1,5,0,0,0,0,1,0,0,0,2,0,0,3,0,4,5] |
Phi of -K* |
[-5,1,1,1,1,1,1,2,3,4,5,0,0,0,0,0,0,0,0,0,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^5-5t |
Normalized Jones-Krushkal polynomial |
z+3 |
Enhanced Jones-Krushkal polynomial |
-16w^5z+16w^4z+4w^3z-3w^2z+3w |
Inner characteristic polynomial |
t^6+55t^4 |
Outer characteristic polynomial |
t^7+85t^5+50t^3 |
Flat arrow polynomial |
K1 - 2*K2*K3 + K5 + 1 |
2-strand cable arrow polynomial |
-200*K1**2 + 240*K1*K4*K5 + 160*K1*K5*K6 - 2*K10**2 + 8*K10*K4*K6 - 50*K2**2 + 104*K2*K4*K6 - 8*K4**2*K6**2 - 172*K4**2 - 200*K5**2 - 132*K6**2 + 250 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |