Min(phi) over symmetries of the knot is: [-2,-2,-1,1,2,2,0,-1,1,2,3,-1,1,2,3,1,1,1,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.551'] |
Arrow polynomial of the knot is: 4*K1**3 - 4*K1*K2 - K1 + K3 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.395', '6.430', '6.440', '6.548', '6.551', '6.774', '6.832', '6.887', '6.908', '6.911', '6.1205', '6.1332', '6.1339', '6.1341', '6.1346', '6.1382', '6.1488', '6.1651', '6.1655', '6.1686'] |
Outer characteristic polynomial of the knot is: t^7+55t^5+42t^3+2t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.551'] |
2-strand cable arrow polynomial of the knot is: 2784*K1**4*K2 - 4640*K1**4 + 1184*K1**3*K2*K3 - 1216*K1**3*K3 - 384*K1**2*K2**4 + 640*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 6896*K1**2*K2**2 - 512*K1**2*K2*K4 + 6952*K1**2*K2 - 1120*K1**2*K3**2 - 32*K1**2*K4**2 - 1528*K1**2 + 512*K1*K2**3*K3 - 704*K1*K2**2*K3 - 128*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 5336*K1*K2*K3 + 664*K1*K3*K4 + 32*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 640*K2**4 - 240*K2**2*K3**2 - 48*K2**2*K4**2 + 576*K2**2*K4 - 1982*K2**2 + 128*K2*K3*K5 + 16*K2*K4*K6 - 956*K3**2 - 124*K4**2 - 4*K5**2 - 2*K6**2 + 2170 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.551'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16801', 'vk6.16805', 'vk6.16856', 'vk6.16860', 'vk6.18183', 'vk6.18185', 'vk6.18520', 'vk6.18522', 'vk6.23241', 'vk6.23245', 'vk6.24640', 'vk6.25069', 'vk6.25071', 'vk6.35233', 'vk6.35258', 'vk6.36776', 'vk6.37221', 'vk6.37223', 'vk6.42752', 'vk6.42756', 'vk6.44359', 'vk6.44361', 'vk6.54992', 'vk6.55025', 'vk6.55980', 'vk6.55982', 'vk6.59392', 'vk6.59396', 'vk6.60517', 'vk6.65646', 'vk6.68182', 'vk6.68186'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U3U6U1O6U5U4U2 |
R3 orbit | {'O1O2O3O4O5U3U6U1O6U5U4U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U4U2U1O6U5U6U3 |
Gauss code of K* | O1O2O3U2O4O5O6U3U6U1U5U4 |
Gauss code of -K* | O1O2O3U4O5O4O6U3U2U6U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 -2 2 2 -1],[ 2 0 2 0 2 1 2],[-1 -2 0 -2 1 1 -1],[ 2 0 2 0 2 1 2],[-2 -2 -1 -2 0 0 -2],[-2 -1 -1 -1 0 0 -2],[ 1 -2 1 -2 2 2 0]] |
Primitive based matrix | [[ 0 2 2 1 -1 -2 -2],[-2 0 0 -1 -2 -1 -1],[-2 0 0 -1 -2 -2 -2],[-1 1 1 0 -1 -2 -2],[ 1 2 2 1 0 -2 -2],[ 2 1 2 2 2 0 0],[ 2 1 2 2 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,1,2,2,0,1,2,1,1,1,2,2,2,1,2,2,2,2,0] |
Phi over symmetry | [-2,-2,-1,1,2,2,0,-1,1,2,3,-1,1,2,3,1,1,1,0,0,0] |
Phi of -K | [-2,-2,-1,1,2,2,0,-1,1,2,3,-1,1,2,3,1,1,1,0,0,0] |
Phi of K* | [-2,-2,-1,1,2,2,0,0,1,2,2,0,1,3,3,1,1,1,-1,-1,0] |
Phi of -K* | [-2,-2,-1,1,2,2,0,2,2,1,2,2,2,1,2,1,2,2,1,1,0] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial | 9w^3z^2+30w^2z+25w |
Inner characteristic polynomial | t^6+37t^4+12t^2 |
Outer characteristic polynomial | t^7+55t^5+42t^3+2t |
Flat arrow polynomial | 4*K1**3 - 4*K1*K2 - K1 + K3 + 1 |
2-strand cable arrow polynomial | 2784*K1**4*K2 - 4640*K1**4 + 1184*K1**3*K2*K3 - 1216*K1**3*K3 - 384*K1**2*K2**4 + 640*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 6896*K1**2*K2**2 - 512*K1**2*K2*K4 + 6952*K1**2*K2 - 1120*K1**2*K3**2 - 32*K1**2*K4**2 - 1528*K1**2 + 512*K1*K2**3*K3 - 704*K1*K2**2*K3 - 128*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 5336*K1*K2*K3 + 664*K1*K3*K4 + 32*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 640*K2**4 - 240*K2**2*K3**2 - 48*K2**2*K4**2 + 576*K2**2*K4 - 1982*K2**2 + 128*K2*K3*K5 + 16*K2*K4*K6 - 956*K3**2 - 124*K4**2 - 4*K5**2 - 2*K6**2 + 2170 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice | False |