Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.544

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-2,0,1,2,2,1,0,2,2,0,0,1,0,0,2]
Flat knots (up to 7 crossings) with same phi are :['6.544']
Arrow polynomial of the knot is: -8*K1**4 + 8*K1**3 + 8*K1**2*K2 + 4*K1**2 - 4*K1*K2 - 2*K1*K3 - 4*K1 - K2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.544', '6.1199']
Outer characteristic polynomial of the knot is: t^7+41t^5+91t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.544']
2-strand cable arrow polynomial of the knot is: 1920*K1**2*K2**5 - 5632*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 4704*K1**2*K2**3 - 5696*K1**2*K2**2 - 288*K1**2*K2*K4 + 2896*K1**2*K2 - 1472*K1**2 + 896*K1*K2**5*K3 - 1536*K1*K2**4*K3 - 256*K1*K2**4*K5 + 4416*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 192*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3264*K1*K2*K3 + 128*K1*K3*K4 - 128*K2**8 + 256*K2**6*K4 - 2432*K2**6 - 128*K2**5*K6 - 1024*K2**4*K3**2 - 64*K2**4*K4**2 + 1824*K2**4*K4 - 1920*K2**4 + 480*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1184*K2**2*K3**2 - 208*K2**2*K4**2 + 1328*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 + 496*K2**2 + 384*K2*K3*K5 + 56*K2*K4*K6 - 496*K3**2 - 130*K4**2 - 32*K5**2 - 8*K6**2 + 1064
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.544']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3246', 'vk6.3263', 'vk6.3270', 'vk6.3364', 'vk6.3399', 'vk6.3406', 'vk6.3454', 'vk6.3507', 'vk6.17647', 'vk6.17652', 'vk6.17658', 'vk6.24200', 'vk6.24210', 'vk6.24215', 'vk6.24223', 'vk6.36457', 'vk6.36471', 'vk6.36487', 'vk6.43557', 'vk6.43567', 'vk6.43572', 'vk6.43580', 'vk6.48100', 'vk6.48101', 'vk6.48131', 'vk6.48134', 'vk6.48169', 'vk6.48172', 'vk6.48185', 'vk6.48188', 'vk6.60252', 'vk6.68539']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3U4U5O6U1U6U2
R3 orbit {'O1O2O3O4O5U3U4U5O6U1U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U4U6U5O6U1U2U3
Gauss code of K* O1O2O3U4O5O4O6U5U6U1U2U3
Gauss code of -K* O1O2O3U2O4O5O6U4U5U6U1U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 -2 0 2 1],[ 2 0 2 -2 0 2 1],[-1 -2 0 -2 0 2 0],[ 2 2 2 0 1 2 0],[ 0 0 0 -1 0 1 0],[-2 -2 -2 -2 -1 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 0 -2 -1 -2 -2],[-1 0 0 0 0 0 -1],[-1 2 0 0 0 -2 -2],[ 0 1 0 0 0 -1 0],[ 2 2 0 2 1 0 2],[ 2 2 1 2 0 -2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,0,2,1,2,2,0,0,0,1,0,2,2,1,0,-2]
Phi over symmetry [-2,-2,0,1,1,2,-2,0,1,2,2,1,0,2,2,0,0,1,0,0,2]
Phi of -K [-2,-2,0,1,1,2,-2,1,1,3,2,2,1,2,2,1,1,1,0,-1,1]
Phi of K* [-2,-1,-1,0,2,2,-1,1,1,2,2,0,1,1,1,1,2,3,2,1,-2]
Phi of -K* [-2,-2,0,1,1,2,-2,0,1,2,2,1,0,2,2,0,0,1,0,0,2]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+8z+5
Enhanced Jones-Krushkal polynomial -6w^4z^2+9w^3z^2-10w^3z+18w^2z+5w
Inner characteristic polynomial t^6+27t^4+38t^2
Outer characteristic polynomial t^7+41t^5+91t^3+6t
Flat arrow polynomial -8*K1**4 + 8*K1**3 + 8*K1**2*K2 + 4*K1**2 - 4*K1*K2 - 2*K1*K3 - 4*K1 - K2
2-strand cable arrow polynomial 1920*K1**2*K2**5 - 5632*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 4704*K1**2*K2**3 - 5696*K1**2*K2**2 - 288*K1**2*K2*K4 + 2896*K1**2*K2 - 1472*K1**2 + 896*K1*K2**5*K3 - 1536*K1*K2**4*K3 - 256*K1*K2**4*K5 + 4416*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 192*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 3264*K1*K2*K3 + 128*K1*K3*K4 - 128*K2**8 + 256*K2**6*K4 - 2432*K2**6 - 128*K2**5*K6 - 1024*K2**4*K3**2 - 64*K2**4*K4**2 + 1824*K2**4*K4 - 1920*K2**4 + 480*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1184*K2**2*K3**2 - 208*K2**2*K4**2 + 1328*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 + 496*K2**2 + 384*K2*K3*K5 + 56*K2*K4*K6 - 496*K3**2 - 130*K4**2 - 32*K5**2 - 8*K6**2 + 1064
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{6}, {3, 5}, {4}, {1, 2}]]
If K is slice False
Contact