Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.540

Min(phi) over symmetries of the knot is: [-2,-2,-1,1,2,2,-1,0,1,3,3,0,0,1,2,1,1,2,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.540']
Arrow polynomial of the knot is: -4*K1*K2 + 2*K1 + 2*K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.540', '6.925', '6.1021', '6.1117', '6.1120', '6.1135', '6.1227', '6.1230', '6.1260', '6.1682', '6.1685', '6.1922']
Outer characteristic polynomial of the knot is: t^7+63t^5+51t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.540']
2-strand cable arrow polynomial of the knot is: -1152*K1**4 + 544*K1**3*K2*K3 + 64*K1**3*K3*K4 - 2144*K1**3*K3 - 896*K1**2*K2**2 + 384*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 5992*K1**2*K2 - 2016*K1**2*K3**2 - 384*K1**2*K3*K5 - 288*K1**2*K4**2 - 96*K1**2*K4*K6 - 5960*K1**2 + 64*K1*K2**3*K3 - 576*K1*K2**2*K3 - 192*K1*K2*K3*K4 + 6624*K1*K2*K3 + 2856*K1*K3*K4 + 600*K1*K4*K5 + 72*K1*K5*K6 - 64*K2**4 - 256*K2**2*K3**2 - 16*K2**2*K4**2 + 576*K2**2*K4 - 3684*K2**2 + 288*K2*K3*K5 + 72*K2*K4*K6 - 2640*K3**2 - 1000*K4**2 - 216*K5**2 - 44*K6**2 + 4158
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.540']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4654', 'vk6.4941', 'vk6.6100', 'vk6.6589', 'vk6.8111', 'vk6.8511', 'vk6.9499', 'vk6.9858', 'vk6.20628', 'vk6.22055', 'vk6.28110', 'vk6.29551', 'vk6.39530', 'vk6.41753', 'vk6.46137', 'vk6.47779', 'vk6.48686', 'vk6.48885', 'vk6.49434', 'vk6.49659', 'vk6.50696', 'vk6.50889', 'vk6.51177', 'vk6.51386', 'vk6.57512', 'vk6.58700', 'vk6.62204', 'vk6.63150', 'vk6.67022', 'vk6.67895', 'vk6.69647', 'vk6.70328']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3U2U4O6U5U1U6
R3 orbit {'O1O2O3O4O5U3U2U4O6U5U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U5U1O6U2U4U3
Gauss code of K* O1O2O3U4O5O6O4U6U2U1U3U5
Gauss code of -K* O1O2O3U1O4O5O6U3U4U6U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 -2 1 2 2],[ 1 0 -2 -2 1 3 2],[ 2 2 0 0 2 3 1],[ 2 2 0 0 1 2 1],[-1 -1 -2 -1 0 1 1],[-2 -3 -3 -2 -1 0 1],[-2 -2 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 2 1 -1 -2 -2],[-2 0 1 -1 -3 -2 -3],[-2 -1 0 -1 -2 -1 -1],[-1 1 1 0 -1 -1 -2],[ 1 3 2 1 0 -2 -2],[ 2 2 1 1 2 0 0],[ 2 3 1 2 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,2,2,-1,1,3,2,3,1,2,1,1,1,1,2,2,2,0]
Phi over symmetry [-2,-2,-1,1,2,2,-1,0,1,3,3,0,0,1,2,1,1,2,-1,-1,0]
Phi of -K [-2,-2,-1,1,2,2,0,-1,1,1,3,-1,2,2,3,1,0,1,0,0,-1]
Phi of K* [-2,-2,-1,1,2,2,-1,0,1,3,3,0,0,1,2,1,1,2,-1,-1,0]
Phi of -K* [-2,-2,-1,1,2,2,0,2,1,1,2,2,2,1,3,1,2,3,1,1,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+25z+31
Enhanced Jones-Krushkal polynomial 5w^3z^2+25w^2z+31w
Inner characteristic polynomial t^6+45t^4+17t^2
Outer characteristic polynomial t^7+63t^5+51t^3+6t
Flat arrow polynomial -4*K1*K2 + 2*K1 + 2*K3 + 1
2-strand cable arrow polynomial -1152*K1**4 + 544*K1**3*K2*K3 + 64*K1**3*K3*K4 - 2144*K1**3*K3 - 896*K1**2*K2**2 + 384*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 5992*K1**2*K2 - 2016*K1**2*K3**2 - 384*K1**2*K3*K5 - 288*K1**2*K4**2 - 96*K1**2*K4*K6 - 5960*K1**2 + 64*K1*K2**3*K3 - 576*K1*K2**2*K3 - 192*K1*K2*K3*K4 + 6624*K1*K2*K3 + 2856*K1*K3*K4 + 600*K1*K4*K5 + 72*K1*K5*K6 - 64*K2**4 - 256*K2**2*K3**2 - 16*K2**2*K4**2 + 576*K2**2*K4 - 3684*K2**2 + 288*K2*K3*K5 + 72*K2*K4*K6 - 2640*K3**2 - 1000*K4**2 - 216*K5**2 - 44*K6**2 + 4158
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {2, 5}, {1, 4}]]
If K is slice ?
Contact