Gauss code |
O1O2O3O4O5O6U1U6U3U5U4U2 |
R3 orbit |
{'O1O2O3O4O5O6U1U6U3U5U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U3U2U4U1U6 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5O6U5U3U2U4U1U6 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 1 -1 2 2 1],[ 5 0 5 2 4 3 1],[-1 -5 0 -2 1 1 0],[ 1 -2 2 0 2 1 0],[-2 -4 -1 -2 0 0 0],[-2 -3 -1 -1 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 1 -1 -5],[-2 0 0 0 -1 -1 -3],[-2 0 0 0 -1 -2 -4],[-1 0 0 0 0 0 -1],[-1 1 1 0 0 -2 -5],[ 1 1 2 0 2 0 -2],[ 5 3 4 1 5 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,-1,1,5,0,0,1,1,3,0,1,2,4,0,0,1,2,5,2] |
Phi over symmetry |
[-5,-1,1,1,2,2,2,1,5,3,4,0,2,1,2,0,0,0,1,1,0] |
Phi of -K |
[-5,-1,1,1,2,2,2,1,5,3,4,0,2,1,2,0,0,0,1,1,0] |
Phi of K* |
[-2,-2,-1,-1,1,5,0,0,1,1,3,0,1,2,4,0,0,1,2,5,2] |
Phi of -K* |
[-5,-1,1,1,2,2,2,1,5,3,4,0,2,1,2,0,0,0,1,1,0] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^5-2t^2-t |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+66t^4+26t^2+1 |
Outer characteristic polynomial |
t^7+102t^5+102t^3+5t |
Flat arrow polynomial |
4*K1**3 - 6*K1*K2 - 2*K1*K4 + 3*K3 + K5 + 1 |
2-strand cable arrow polynomial |
768*K1**4*K2 - 2880*K1**4 + 1344*K1**3*K2*K3 - 1088*K1**3*K3 - 128*K1**2*K2**4 + 256*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 4064*K1**2*K2**2 - 1152*K1**2*K2*K4 + 6688*K1**2*K2 - 2880*K1**2*K3**2 - 192*K1**2*K3*K5 - 160*K1**2*K4**2 - 4648*K1**2 + 640*K1*K2**3*K3 - 832*K1*K2**2*K3 - 576*K1*K2**2*K5 + 512*K1*K2*K3**3 - 576*K1*K2*K3*K4 - 256*K1*K2*K3*K6 + 8160*K1*K2*K3 - 64*K1*K2*K4*K5 - 64*K1*K2*K4*K7 + 3392*K1*K3*K4 + 816*K1*K4*K5 + 64*K1*K5*K6 + 32*K1*K6*K7 - 2*K10**2 + 8*K10*K2*K8 - 32*K2**6 + 96*K2**4*K4 - 752*K2**4 + 64*K2**3*K3*K5 - 32*K2**3*K6 + 128*K2**2*K3**2*K4 - 1184*K2**2*K3**2 - 64*K2**2*K3*K7 - 88*K2**2*K4**2 - 32*K2**2*K4*K8 + 1632*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K8**2 - 4368*K2**2 - 192*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 1680*K2*K3*K5 + 272*K2*K4*K6 + 128*K2*K5*K7 + 40*K2*K6*K8 - 320*K3**4 - 64*K3**2*K4**2 + 336*K3**2*K6 - 2952*K3**2 + 80*K3*K4*K7 + 32*K3*K5*K8 + 16*K4**2*K8 - 1388*K4**2 - 720*K5**2 - 174*K6**2 - 64*K7**2 - 36*K8**2 + 4846 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}]] |
If K is slice |
False |