Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.529

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,-1,2,3,4,2,2,2,2,1,0,0,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.529']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+50t^5+56t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.529']
2-strand cable arrow polynomial of the knot is: 512*K1**4*K2 - 1712*K1**4 + 256*K1**3*K2*K3 + 128*K1**3*K3*K4 - 736*K1**3*K3 - 1024*K1**2*K2**2 - 576*K1**2*K2*K4 + 4224*K1**2*K2 - 848*K1**2*K3**2 - 528*K1**2*K4**2 - 32*K1**2*K5**2 - 4320*K1**2 - 320*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 4048*K1*K2*K3 - 96*K1*K2*K4*K5 + 2616*K1*K3*K4 + 832*K1*K4*K5 + 120*K1*K5*K6 - 32*K2**4 - 96*K2**2*K3**2 - 72*K2**2*K4**2 + 840*K2**2*K4 - 3270*K2**2 + 328*K2*K3*K5 + 144*K2*K4*K6 - 2244*K3**2 - 1496*K4**2 - 436*K5**2 - 82*K6**2 + 3966
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.529']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3635', 'vk6.3728', 'vk6.3921', 'vk6.4020', 'vk6.7061', 'vk6.7124', 'vk6.7301', 'vk6.7394', 'vk6.11393', 'vk6.12574', 'vk6.12687', 'vk6.19101', 'vk6.19146', 'vk6.19816', 'vk6.25714', 'vk6.25773', 'vk6.26251', 'vk6.26694', 'vk6.30991', 'vk6.31120', 'vk6.32171', 'vk6.37821', 'vk6.37876', 'vk6.44980', 'vk6.48263', 'vk6.48444', 'vk6.50021', 'vk6.50166', 'vk6.52150', 'vk6.63724', 'vk6.66202', 'vk6.66229']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2U5U4O6U1U6U3
R3 orbit {'O1O2O3O4O5U2U5U4O6U1U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U3U6U5O6U2U1U4
Gauss code of K* O1O2O3U4O5O4O6U5U1U6U3U2
Gauss code of -K* O1O2O3U2O4O5O6U5U4U1U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -3 2 1 1 1],[ 2 0 -2 3 1 1 1],[ 3 2 0 3 2 1 0],[-2 -3 -3 0 0 0 0],[-1 -1 -2 0 0 0 0],[-1 -1 -1 0 0 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 2 1 1 1 -2 -3],[-2 0 0 0 0 -3 -3],[-1 0 0 0 0 -1 0],[-1 0 0 0 0 -1 -1],[-1 0 0 0 0 -1 -2],[ 2 3 1 1 1 0 -2],[ 3 3 0 1 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,-1,2,3,0,0,0,3,3,0,0,1,0,0,1,1,1,2,2]
Phi over symmetry [-3,-2,1,1,1,2,-1,2,3,4,2,2,2,2,1,0,0,1,0,1,1]
Phi of -K [-3,-2,1,1,1,2,-1,2,3,4,2,2,2,2,1,0,0,1,0,1,1]
Phi of K* [-2,-1,-1,-1,2,3,1,1,1,1,2,0,0,2,2,0,2,3,2,4,-1]
Phi of -K* [-3,-2,1,1,1,2,2,0,1,2,3,1,1,1,3,0,0,0,0,0,0]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+30t^4+24t^2
Outer characteristic polynomial t^7+50t^5+56t^3+6t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial 512*K1**4*K2 - 1712*K1**4 + 256*K1**3*K2*K3 + 128*K1**3*K3*K4 - 736*K1**3*K3 - 1024*K1**2*K2**2 - 576*K1**2*K2*K4 + 4224*K1**2*K2 - 848*K1**2*K3**2 - 528*K1**2*K4**2 - 32*K1**2*K5**2 - 4320*K1**2 - 320*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 4048*K1*K2*K3 - 96*K1*K2*K4*K5 + 2616*K1*K3*K4 + 832*K1*K4*K5 + 120*K1*K5*K6 - 32*K2**4 - 96*K2**2*K3**2 - 72*K2**2*K4**2 + 840*K2**2*K4 - 3270*K2**2 + 328*K2*K3*K5 + 144*K2*K4*K6 - 2244*K3**2 - 1496*K4**2 - 436*K5**2 - 82*K6**2 + 3966
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}]]
If K is slice False
Contact