Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.526

Min(phi) over symmetries of the knot is: [-3,-1,0,0,2,2,-1,0,2,3,4,0,1,1,1,1,1,1,1,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.526']
Arrow polynomial of the knot is: 8*K1**3 + 4*K1**2*K2 - 10*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 - 2*K2**2 + 4*K2 + K3 + K4 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.526']
Outer characteristic polynomial of the knot is: t^7+55t^5+92t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.526']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 448*K1**4*K2 - 960*K1**4 + 512*K1**3*K2*K3 - 224*K1**3*K3 - 448*K1**2*K2**4 + 2016*K1**2*K2**3 - 320*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 7264*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 576*K1**2*K2*K4 + 7888*K1**2*K2 - 416*K1**2*K3**2 - 32*K1**2*K4**2 - 5992*K1**2 + 1728*K1*K2**3*K3 + 288*K1*K2**2*K3*K4 - 1632*K1*K2**2*K3 + 160*K1*K2**2*K4*K5 - 288*K1*K2**2*K5 + 96*K1*K2*K3**3 - 672*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7184*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1400*K1*K3*K4 + 272*K1*K4*K5 + 24*K1*K5*K6 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 2008*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 + 128*K2**2*K3**2*K4 - 1408*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 376*K2**2*K4**2 - 32*K2**2*K4*K8 + 1784*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 3406*K2**2 - 128*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 912*K2*K3*K5 + 232*K2*K4*K6 + 16*K2*K5*K7 + 8*K2*K6*K8 - 32*K3**4 - 32*K3**2*K4**2 + 40*K3**2*K6 - 2180*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 840*K4**2 - 204*K5**2 - 26*K6**2 - 2*K8**2 + 4512
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.526']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4758', 'vk6.5085', 'vk6.6308', 'vk6.6747', 'vk6.8269', 'vk6.8718', 'vk6.9647', 'vk6.9962', 'vk6.20399', 'vk6.21748', 'vk6.27735', 'vk6.29273', 'vk6.39173', 'vk6.41401', 'vk6.45899', 'vk6.47540', 'vk6.48790', 'vk6.49001', 'vk6.49610', 'vk6.49813', 'vk6.50810', 'vk6.51025', 'vk6.51289', 'vk6.51484', 'vk6.57260', 'vk6.58477', 'vk6.61902', 'vk6.63011', 'vk6.66873', 'vk6.67743', 'vk6.69495', 'vk6.70217']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2U4U5O6U3U1U6
R3 orbit {'O1O2O3O4O5U2U4U5O6U3U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U5U3O6U1U2U4
Gauss code of K* O1O2O3U4O5O6O4U6U1U5U2U3
Gauss code of -K* O1O2O3U1O4O5O6U4U5U3U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -3 0 0 2 2],[ 1 0 -3 1 0 2 2],[ 3 3 0 3 1 2 1],[ 0 -1 -3 0 -1 1 1],[ 0 0 -1 1 0 1 0],[-2 -2 -2 -1 -1 0 0],[-2 -2 -1 -1 0 0 0]]
Primitive based matrix [[ 0 2 2 0 0 -1 -3],[-2 0 0 0 -1 -2 -1],[-2 0 0 -1 -1 -2 -2],[ 0 0 1 0 1 0 -1],[ 0 1 1 -1 0 -1 -3],[ 1 2 2 0 1 0 -3],[ 3 1 2 1 3 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,0,1,3,0,0,1,2,1,1,1,2,2,-1,0,1,1,3,3]
Phi over symmetry [-3,-1,0,0,2,2,-1,0,2,3,4,0,1,1,1,1,1,1,1,2,0]
Phi of -K [-3,-1,0,0,2,2,-1,0,2,3,4,0,1,1,1,1,1,1,1,2,0]
Phi of K* [-2,-2,0,0,1,3,0,1,1,1,3,1,2,1,4,-1,0,0,1,2,-1]
Phi of -K* [-3,-1,0,0,2,2,3,1,3,1,2,0,1,2,2,1,0,1,1,1,0]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 4z^2+23z+31
Enhanced Jones-Krushkal polynomial 4w^3z^2+23w^2z+31w
Inner characteristic polynomial t^6+37t^4+34t^2
Outer characteristic polynomial t^7+55t^5+92t^3+5t
Flat arrow polynomial 8*K1**3 + 4*K1**2*K2 - 10*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 - 2*K2**2 + 4*K2 + K3 + K4 + 6
2-strand cable arrow polynomial -256*K1**4*K2**2 + 448*K1**4*K2 - 960*K1**4 + 512*K1**3*K2*K3 - 224*K1**3*K3 - 448*K1**2*K2**4 + 2016*K1**2*K2**3 - 320*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 7264*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 576*K1**2*K2*K4 + 7888*K1**2*K2 - 416*K1**2*K3**2 - 32*K1**2*K4**2 - 5992*K1**2 + 1728*K1*K2**3*K3 + 288*K1*K2**2*K3*K4 - 1632*K1*K2**2*K3 + 160*K1*K2**2*K4*K5 - 288*K1*K2**2*K5 + 96*K1*K2*K3**3 - 672*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7184*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1400*K1*K3*K4 + 272*K1*K4*K5 + 24*K1*K5*K6 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 192*K2**4*K4 - 2008*K2**4 + 96*K2**3*K3*K5 + 32*K2**3*K4*K6 + 128*K2**2*K3**2*K4 - 1408*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 376*K2**2*K4**2 - 32*K2**2*K4*K8 + 1784*K2**2*K4 - 96*K2**2*K5**2 - 8*K2**2*K6**2 - 3406*K2**2 - 128*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 912*K2*K3*K5 + 232*K2*K4*K6 + 16*K2*K5*K7 + 8*K2*K6*K8 - 32*K3**4 - 32*K3**2*K4**2 + 40*K3**2*K6 - 2180*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 840*K4**2 - 204*K5**2 - 26*K6**2 - 2*K8**2 + 4512
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact