Gauss code |
O1O2O3O4O5U2U4U5O6U1U6U3 |
R3 orbit |
{'O1O2O3O4O5U2U4U5O6U1U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U6U5O6U1U2U4 |
Gauss code of K* |
O1O2O3U4O5O4O6U5U1U6U2U3 |
Gauss code of -K* |
O1O2O3U2O4O5O6U4U5U1U6U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -3 2 0 2 1],[ 2 0 -2 3 0 2 1],[ 3 2 0 3 1 2 0],[-2 -3 -3 0 -1 1 0],[ 0 0 -1 1 0 1 0],[-2 -2 -2 -1 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 0 -2 -3],[-2 0 1 0 -1 -3 -3],[-2 -1 0 0 -1 -2 -2],[-1 0 0 0 0 -1 0],[ 0 1 1 0 0 0 -1],[ 2 3 2 1 0 0 -2],[ 3 3 2 0 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,0,2,3,-1,0,1,3,3,0,1,2,2,0,1,0,0,1,2] |
Phi over symmetry |
[-3,-2,0,1,2,2,-1,2,4,2,3,2,2,1,2,1,1,1,1,1,-1] |
Phi of -K |
[-3,-2,0,1,2,2,-1,2,4,2,3,2,2,1,2,1,1,1,1,1,-1] |
Phi of K* |
[-2,-2,-1,0,2,3,-1,1,1,2,3,1,1,1,2,1,2,4,2,2,-1] |
Phi of -K* |
[-3,-2,0,1,2,2,2,1,0,2,3,0,1,2,3,0,1,1,0,0,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
3z^2+20z+29 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2-4w^3z+24w^2z+29w |
Inner characteristic polynomial |
t^6+35t^4+23t^2 |
Outer characteristic polynomial |
t^7+57t^5+62t^3+8t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 - 2*K2**2 + 5*K2 + K3 + K4 + 7 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 224*K1**4*K2 - 864*K1**4 + 128*K1**3*K2**3*K3 + 448*K1**3*K2*K3 - 64*K1**3*K3 - 832*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3456*K1**2*K2**3 - 320*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 8848*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 832*K1**2*K2*K4 + 8320*K1**2*K2 - 416*K1**2*K3**2 - 96*K1**2*K4**2 - 6108*K1**2 - 640*K1*K2**4*K3 - 128*K1*K2**3*K3*K4 + 2688*K1*K2**3*K3 + 640*K1*K2**2*K3*K4 - 2112*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 288*K1*K2**2*K5 + 128*K1*K2*K3**3 - 704*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7784*K1*K2*K3 - 32*K1*K2*K4*K5 + 1472*K1*K3*K4 + 328*K1*K4*K5 + 40*K1*K5*K6 - 64*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 640*K2**4*K4 - 3200*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 + 128*K2**2*K3**2*K4 - 1664*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 472*K2**2*K4**2 + 2400*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 3078*K2**2 - 32*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 856*K2*K3*K5 - 32*K2*K4**2*K6 + 144*K2*K4*K6 + 16*K2*K5*K7 + 8*K2*K6*K8 - 32*K3**4 - 32*K3**2*K4**2 + 40*K3**2*K6 - 2248*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 926*K4**2 - 228*K5**2 - 66*K6**2 - 2*K8**2 + 4686 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}]] |
If K is slice |
False |