Gauss code |
O1O2O3O4O5U2U3U4O6U5U1U6 |
R3 orbit |
{'O1O2O3O4O5U2U3U4O6U5U1U6', 'O1O2O3O4U1O5U3U4O6U2U5U6'} |
R3 orbit length |
2 |
Gauss code of -K |
O1O2O3O4O5U6U5U1O6U2U3U4 |
Gauss code of K* |
O1O2O3U4O5O6O4U6U1U2U3U5 |
Gauss code of -K* |
O1O2O3U1O4O5O6U3U4U5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -3 -1 1 2 2],[ 1 0 -3 -1 1 3 2],[ 3 3 0 1 2 3 1],[ 1 1 -1 0 1 2 1],[-1 -1 -2 -1 0 1 1],[-2 -3 -3 -2 -1 0 1],[-2 -2 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 1 -1 -1 -3],[-2 0 1 -1 -2 -3 -3],[-2 -1 0 -1 -1 -2 -1],[-1 1 1 0 -1 -1 -2],[ 1 2 1 1 0 1 -1],[ 1 3 2 1 -1 0 -3],[ 3 3 1 2 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,1,1,3,-1,1,2,3,3,1,1,2,1,1,1,2,-1,1,3] |
Phi over symmetry |
[-3,-1,-1,1,2,2,-1,1,2,2,4,1,1,0,1,1,1,2,0,0,-1] |
Phi of -K |
[-3,-1,-1,1,2,2,-1,1,2,2,4,1,1,0,1,1,1,2,0,0,-1] |
Phi of K* |
[-2,-2,-1,1,1,3,-1,0,1,2,4,0,0,1,2,1,1,2,-1,-1,1] |
Phi of -K* |
[-3,-1,-1,1,2,2,1,3,2,1,3,1,1,1,2,1,2,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
4z+9 |
Enhanced Jones-Krushkal polynomial |
4w^4z-8w^3z+8w^2z+9w |
Inner characteristic polynomial |
t^6+48t^4 |
Outer characteristic polynomial |
t^7+68t^5+24t^3 |
Flat arrow polynomial |
4*K1**3 - 4*K1**2 - 2*K1*K2 - 2*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial |
-112*K1**4 + 384*K1**2*K2**5 - 1152*K1**2*K2**4 + 832*K1**2*K2**3 - 1088*K1**2*K2**2 + 1088*K1**2*K2 - 16*K1**2*K3**2 - 16*K1**2*K4**2 - 872*K1**2 + 480*K1*K2**3*K3 + 568*K1*K2*K3 + 120*K1*K3*K4 + 32*K1*K4*K5 - 288*K2**6 + 64*K2**4*K4 - 128*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 80*K2**2*K4 - 216*K2**2 + 8*K2*K3*K5 - 180*K3**2 - 84*K4**2 - 12*K5**2 + 578 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |