Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.518

Min(phi) over symmetries of the knot is: [-3,-3,0,1,2,3,0,0,3,3,2,1,3,4,3,0,2,1,1,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.518']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+82t^5+164t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.518']
2-strand cable arrow polynomial of the knot is: -2304*K1**2*K2**2 + 2632*K1**2*K2 - 2568*K1**2 + 320*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 352*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 4080*K1*K2*K3 - 96*K1*K2*K4*K5 + 488*K1*K3*K4 + 96*K1*K4*K5 + 24*K1*K5*K6 - 1336*K2**4 - 1632*K2**2*K3**2 - 168*K2**2*K4**2 + 1352*K2**2*K4 - 1942*K2**2 - 128*K2*K3**2*K4 + 1392*K2*K3*K5 + 232*K2*K4*K6 + 64*K3**2*K6 - 1568*K3**2 - 530*K4**2 - 320*K5**2 - 74*K6**2 + 2464
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.518']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16369', 'vk6.16412', 'vk6.18109', 'vk6.18445', 'vk6.22703', 'vk6.22806', 'vk6.24558', 'vk6.24975', 'vk6.34676', 'vk6.34757', 'vk6.36699', 'vk6.37120', 'vk6.42329', 'vk6.42375', 'vk6.43975', 'vk6.44290', 'vk6.54628', 'vk6.54655', 'vk6.55927', 'vk6.56221', 'vk6.59107', 'vk6.59176', 'vk6.60457', 'vk6.60820', 'vk6.64654', 'vk6.64704', 'vk6.65579', 'vk6.65890', 'vk6.68004', 'vk6.68032', 'vk6.68656', 'vk6.68869']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2U1U5O6U3U6U4
R3 orbit {'O1O2O3O4O5U2U1U5O6U3U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U2U6U3O6U1U5U4
Gauss code of K* O1O2O3U4O5O4O6U2U1U5U6U3
Gauss code of -K* O1O2O3U2O4O5O6U4U1U3U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -3 0 3 2 1],[ 3 0 0 3 4 2 1],[ 3 0 0 2 3 1 1],[ 0 -3 -2 0 2 0 1],[-3 -4 -3 -2 0 0 0],[-2 -2 -1 0 0 0 0],[-1 -1 -1 -1 0 0 0]]
Primitive based matrix [[ 0 3 2 1 0 -3 -3],[-3 0 0 0 -2 -3 -4],[-2 0 0 0 0 -1 -2],[-1 0 0 0 -1 -1 -1],[ 0 2 0 1 0 -2 -3],[ 3 3 1 1 2 0 0],[ 3 4 2 1 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,0,3,3,0,0,2,3,4,0,0,1,2,1,1,1,2,3,0]
Phi over symmetry [-3,-3,0,1,2,3,0,0,3,3,2,1,3,4,3,0,2,1,1,2,1]
Phi of -K [-3,-3,0,1,2,3,0,0,3,3,2,1,3,4,3,0,2,1,1,2,1]
Phi of K* [-3,-2,-1,0,3,3,1,2,1,2,3,1,2,3,4,0,3,3,0,1,0]
Phi of -K* [-3,-3,0,1,2,3,0,2,1,1,3,3,1,2,4,1,0,2,0,0,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 8z^2+25z+19
Enhanced Jones-Krushkal polynomial -2w^4z^2+10w^3z^2-2w^3z+27w^2z+19w
Inner characteristic polynomial t^6+50t^4+39t^2
Outer characteristic polynomial t^7+82t^5+164t^3+8t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -2304*K1**2*K2**2 + 2632*K1**2*K2 - 2568*K1**2 + 320*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 352*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 4080*K1*K2*K3 - 96*K1*K2*K4*K5 + 488*K1*K3*K4 + 96*K1*K4*K5 + 24*K1*K5*K6 - 1336*K2**4 - 1632*K2**2*K3**2 - 168*K2**2*K4**2 + 1352*K2**2*K4 - 1942*K2**2 - 128*K2*K3**2*K4 + 1392*K2*K3*K5 + 232*K2*K4*K6 + 64*K3**2*K6 - 1568*K3**2 - 530*K4**2 - 320*K5**2 - 74*K6**2 + 2464
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact