Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.508

Min(phi) over symmetries of the knot is: [-4,-1,0,1,1,3,0,2,1,4,4,0,0,1,1,0,0,1,0,0,2]
Flat knots (up to 7 crossings) with same phi are :['6.508']
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 2*K2**2 + 4*K2 + 2*K3 + 7
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.508']
Outer characteristic polynomial of the knot is: t^7+92t^5+88t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.508']
2-strand cable arrow polynomial of the knot is: -192*K1**6 - 384*K1**4*K2**2 + 2528*K1**4*K2 - 4912*K1**4 - 256*K1**3*K2**2*K3 + 1312*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1184*K1**3*K3 - 128*K1**2*K2**4 + 1504*K1**2*K2**3 + 416*K1**2*K2**2*K4 - 8336*K1**2*K2**2 + 320*K1**2*K2*K3**2 + 128*K1**2*K2*K4**2 - 1312*K1**2*K2*K4 + 11264*K1**2*K2 - 1264*K1**2*K3**2 - 368*K1**2*K4**2 - 6020*K1**2 + 608*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 2176*K1*K2**2*K3 - 416*K1*K2**2*K5 + 64*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 704*K1*K2*K3*K4 + 9808*K1*K2*K3 - 160*K1*K2*K4*K5 + 2496*K1*K3*K4 + 528*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1392*K2**4 + 32*K2**3*K3*K5 + 64*K2**2*K3**2*K4 - 816*K2**2*K3**2 + 32*K2**2*K4**3 - 376*K2**2*K4**2 + 2520*K2**2*K4 - 5748*K2**2 - 160*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 968*K2*K3*K5 + 328*K2*K4*K6 - 64*K3**4 - 48*K3**2*K4**2 + 88*K3**2*K6 - 2956*K3**2 + 16*K3*K4*K7 - 8*K4**4 - 1320*K4**2 - 352*K5**2 - 84*K6**2 + 5950
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.508']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11480', 'vk6.11785', 'vk6.12802', 'vk6.13139', 'vk6.17055', 'vk6.17297', 'vk6.20858', 'vk6.20938', 'vk6.22265', 'vk6.22348', 'vk6.23775', 'vk6.28328', 'vk6.31245', 'vk6.31596', 'vk6.32820', 'vk6.35563', 'vk6.36014', 'vk6.39948', 'vk6.40104', 'vk6.42025', 'vk6.42966', 'vk6.43263', 'vk6.46493', 'vk6.46626', 'vk6.52233', 'vk6.53070', 'vk6.53388', 'vk6.55463', 'vk6.58853', 'vk6.59943', 'vk6.64410', 'vk6.69721']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U6U4O6U3U5U2
R3 orbit {'O1O2O3O4O5U1U6U4O6U3U5U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U4U1U3O6U2U6U5
Gauss code of K* O1O2O3U2O4O5O6U1U6U4U3U5
Gauss code of -K* O1O2O3U4O5O4O6U2U5U3U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 1 0 1 3 -1],[ 4 0 4 2 1 3 3],[-1 -4 0 -1 0 2 -2],[ 0 -2 1 0 1 2 -1],[-1 -1 0 -1 0 0 -1],[-3 -3 -2 -2 0 0 -3],[ 1 -3 2 1 1 3 0]]
Primitive based matrix [[ 0 3 1 1 0 -1 -4],[-3 0 0 -2 -2 -3 -3],[-1 0 0 0 -1 -1 -1],[-1 2 0 0 -1 -2 -4],[ 0 2 1 1 0 -1 -2],[ 1 3 1 2 1 0 -3],[ 4 3 1 4 2 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,0,1,4,0,2,2,3,3,0,1,1,1,1,2,4,1,2,3]
Phi over symmetry [-4,-1,0,1,1,3,0,2,1,4,4,0,0,1,1,0,0,1,0,0,2]
Phi of -K [-4,-1,0,1,1,3,0,2,1,4,4,0,0,1,1,0,0,1,0,0,2]
Phi of K* [-3,-1,-1,0,1,4,0,2,1,1,4,0,0,0,1,0,1,4,0,2,0]
Phi of -K* [-4,-1,0,1,1,3,3,2,1,4,3,1,1,2,3,1,1,2,0,0,2]
Symmetry type of based matrix c
u-polynomial t^4-t^3-t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+64t^4+52t^2+4
Outer characteristic polynomial t^7+92t^5+88t^3+11t
Flat arrow polynomial 4*K1**3 + 4*K1**2*K2 - 12*K1**2 - 6*K1*K2 - 2*K2**2 + 4*K2 + 2*K3 + 7
2-strand cable arrow polynomial -192*K1**6 - 384*K1**4*K2**2 + 2528*K1**4*K2 - 4912*K1**4 - 256*K1**3*K2**2*K3 + 1312*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1184*K1**3*K3 - 128*K1**2*K2**4 + 1504*K1**2*K2**3 + 416*K1**2*K2**2*K4 - 8336*K1**2*K2**2 + 320*K1**2*K2*K3**2 + 128*K1**2*K2*K4**2 - 1312*K1**2*K2*K4 + 11264*K1**2*K2 - 1264*K1**2*K3**2 - 368*K1**2*K4**2 - 6020*K1**2 + 608*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 2176*K1*K2**2*K3 - 416*K1*K2**2*K5 + 64*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 704*K1*K2*K3*K4 + 9808*K1*K2*K3 - 160*K1*K2*K4*K5 + 2496*K1*K3*K4 + 528*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1392*K2**4 + 32*K2**3*K3*K5 + 64*K2**2*K3**2*K4 - 816*K2**2*K3**2 + 32*K2**2*K4**3 - 376*K2**2*K4**2 + 2520*K2**2*K4 - 5748*K2**2 - 160*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 968*K2*K3*K5 + 328*K2*K4*K6 - 64*K3**4 - 48*K3**2*K4**2 + 88*K3**2*K6 - 2956*K3**2 + 16*K3*K4*K7 - 8*K4**4 - 1320*K4**2 - 352*K5**2 - 84*K6**2 + 5950
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact