Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.500

Min(phi) over symmetries of the knot is: [-4,0,0,1,1,2,0,1,3,4,4,0,1,1,0,1,1,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.500']
Arrow polynomial of the knot is: 4*K1**2*K2 - 2*K1*K3 - K2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.64', '6.74', '6.106', '6.178', '6.300', '6.397', '6.479', '6.481', '6.500']
Outer characteristic polynomial of the knot is: t^7+61t^5+98t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.500']
2-strand cable arrow polynomial of the knot is: -256*K1**4 + 128*K1**3*K2*K3 + 480*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 2656*K1**2*K2**2 - 512*K1**2*K2*K4 + 3320*K1**2*K2 - 576*K1**2*K3**2 - 32*K1**2*K4**2 - 3528*K1**2 + 128*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 544*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 640*K1*K2**2*K5 - 640*K1*K2*K3*K4 + 4664*K1*K2*K3 - 64*K1*K2*K4*K5 + 1440*K1*K3*K4 + 640*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**4*K4**2 + 256*K2**4*K4 - 1344*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 416*K2**2*K3**2 - 496*K2**2*K4**2 + 2184*K2**2*K4 - 160*K2**2*K5**2 - 8*K2**2*K6**2 - 2968*K2**2 - 32*K2*K3*K4*K5 + 1384*K2*K3*K5 + 224*K2*K4*K6 + 56*K2*K5*K7 - 1984*K3**2 - 1154*K4**2 - 600*K5**2 - 24*K6**2 + 3392
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.500']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17130', 'vk6.17373', 'vk6.20606', 'vk6.22020', 'vk6.23535', 'vk6.23869', 'vk6.28076', 'vk6.29527', 'vk6.35699', 'vk6.36122', 'vk6.39486', 'vk6.41693', 'vk6.43038', 'vk6.43344', 'vk6.46079', 'vk6.47738', 'vk6.55279', 'vk6.55527', 'vk6.57478', 'vk6.58642', 'vk6.59703', 'vk6.60043', 'vk6.62153', 'vk6.63111', 'vk6.65084', 'vk6.65272', 'vk6.67006', 'vk6.67873', 'vk6.68334', 'vk6.68482', 'vk6.69626', 'vk6.70314']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U5U4O6U3U2U6
R3 orbit {'O1O2O3O4O5U1U5U4O6U3U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U4U3O6U2U1U5
Gauss code of K* O1O2O3U4O5O6O4U1U6U5U3U2
Gauss code of -K* O1O2O3U1O4O5O6U5U4U3U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 0 0 1 1 2],[ 4 0 4 3 2 1 2],[ 0 -4 0 0 0 0 2],[ 0 -3 0 0 0 0 1],[-1 -2 0 0 0 0 0],[-1 -1 0 0 0 0 0],[-2 -2 -2 -1 0 0 0]]
Primitive based matrix [[ 0 2 1 1 0 0 -4],[-2 0 0 0 -1 -2 -2],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 0 -2],[ 0 1 0 0 0 0 -3],[ 0 2 0 0 0 0 -4],[ 4 2 1 2 3 4 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,0,4,0,0,1,2,2,0,0,0,1,0,0,2,0,3,4]
Phi over symmetry [-4,0,0,1,1,2,0,1,3,4,4,0,1,1,0,1,1,1,0,1,1]
Phi of -K [-4,0,0,1,1,2,0,1,3,4,4,0,1,1,0,1,1,1,0,1,1]
Phi of K* [-2,-1,-1,0,0,4,1,1,0,1,4,0,1,1,3,1,1,4,0,0,1]
Phi of -K* [-4,0,0,1,1,2,3,4,1,2,2,0,0,0,1,0,0,2,0,0,0]
Symmetry type of based matrix c
u-polynomial t^4-t^2-2t
Normalized Jones-Krushkal polynomial 9z^2+30z+25
Enhanced Jones-Krushkal polynomial 9w^3z^2+30w^2z+25w
Inner characteristic polynomial t^6+39t^4+29t^2
Outer characteristic polynomial t^7+61t^5+98t^3+13t
Flat arrow polynomial 4*K1**2*K2 - 2*K1*K3 - K2
2-strand cable arrow polynomial -256*K1**4 + 128*K1**3*K2*K3 + 480*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 2656*K1**2*K2**2 - 512*K1**2*K2*K4 + 3320*K1**2*K2 - 576*K1**2*K3**2 - 32*K1**2*K4**2 - 3528*K1**2 + 128*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 544*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 640*K1*K2**2*K5 - 640*K1*K2*K3*K4 + 4664*K1*K2*K3 - 64*K1*K2*K4*K5 + 1440*K1*K3*K4 + 640*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**4*K4**2 + 256*K2**4*K4 - 1344*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 416*K2**2*K3**2 - 496*K2**2*K4**2 + 2184*K2**2*K4 - 160*K2**2*K5**2 - 8*K2**2*K6**2 - 2968*K2**2 - 32*K2*K3*K4*K5 + 1384*K2*K3*K5 + 224*K2*K4*K6 + 56*K2*K5*K7 - 1984*K3**2 - 1154*K4**2 - 600*K5**2 - 24*K6**2 + 3392
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact