Gauss code |
O1O2O3O4O5U1U5U3O6U4U2U6 |
R3 orbit |
{'O1O2O3O4O5U1U5U3O6U4U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U4U2O6U3U1U5 |
Gauss code of K* |
O1O2O3U4O5O6O4U1U6U3U5U2 |
Gauss code of -K* |
O1O2O3U1O4O5O6U5U3U4U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 0 0 1 1 2],[ 4 0 4 2 3 1 2],[ 0 -4 0 -1 1 0 2],[ 0 -2 1 0 1 0 1],[-1 -3 -1 -1 0 0 1],[-1 -1 0 0 0 0 0],[-2 -2 -2 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 0 -4],[-2 0 0 -1 -1 -2 -2],[-1 0 0 0 0 0 -1],[-1 1 0 0 -1 -1 -3],[ 0 1 0 1 0 1 -2],[ 0 2 0 1 -1 0 -4],[ 4 2 1 3 2 4 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,0,4,0,1,1,2,2,0,0,0,1,1,1,3,-1,2,4] |
Phi over symmetry |
[-4,0,0,1,1,2,0,2,2,4,4,1,0,1,0,0,1,1,0,0,1] |
Phi of -K |
[-4,0,0,1,1,2,0,2,2,4,4,1,0,1,0,0,1,1,0,0,1] |
Phi of K* |
[-2,-1,-1,0,0,4,0,1,0,1,4,0,0,0,2,1,1,4,-1,0,2] |
Phi of -K* |
[-4,0,0,1,1,2,2,4,1,3,2,1,0,1,1,0,1,2,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
13z+27 |
Enhanced Jones-Krushkal polynomial |
-2w^3z+15w^2z+27w |
Inner characteristic polynomial |
t^6+43t^4+15t^2 |
Outer characteristic polynomial |
t^7+65t^5+74t^3 |
Flat arrow polynomial |
4*K1**3 - 10*K1**2 - 8*K1*K2 + K1 - 2*K2**2 + 5*K2 + 3*K3 + K4 + 7 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 832*K1**4*K2 - 1408*K1**4 + 544*K1**2*K2**3 - 2688*K1**2*K2**2 + 3632*K1**2*K2 - 336*K1**2*K3**2 - 128*K1**2*K4**2 - 2916*K1**2 + 160*K1*K2**3*K3 + 2712*K1*K2*K3 + 1080*K1*K3*K4 + 272*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**6 + 160*K2**4*K4 - 760*K2**4 - 432*K2**2*K3**2 - 288*K2**2*K4**2 + 840*K2**2*K4 - 2078*K2**2 + 424*K2*K3*K5 + 152*K2*K4*K6 - 80*K3**4 - 96*K3**2*K4**2 + 48*K3**2*K6 - 1208*K3**2 + 64*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 814*K4**2 - 244*K5**2 - 42*K6**2 - 8*K7**2 - 2*K8**2 + 2862 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {4, 5}, {1, 2}], [{6}, {2, 5}, {3, 4}, {1}]] |
If K is slice |
False |