Gauss code |
O1O2O3O4O5U1U5U3O6U2U6U4 |
R3 orbit |
{'O1O2O3O4O5U1U5U3O6U2U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U6U4O6U3U1U5 |
Gauss code of K* |
O1O2O3U4O5O4O6U1U5U3U6U2 |
Gauss code of -K* |
O1O2O3U2O4O5O6U5U1U4U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -1 0 3 1 1],[ 4 0 3 2 4 1 1],[ 1 -3 0 0 3 0 1],[ 0 -2 0 0 1 0 0],[-3 -4 -3 -1 0 0 0],[-1 -1 0 0 0 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 3 1 1 0 -1 -4],[-3 0 0 0 -1 -3 -4],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 -1 -1],[ 0 1 0 0 0 0 -2],[ 1 3 0 1 0 0 -3],[ 4 4 1 1 2 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,0,1,4,0,0,1,3,4,0,0,0,1,0,1,1,0,2,3] |
Phi over symmetry |
[-4,-1,0,1,1,3,0,2,4,4,3,1,1,2,1,1,1,2,0,2,2] |
Phi of -K |
[-4,-1,0,1,1,3,0,2,4,4,3,1,1,2,1,1,1,2,0,2,2] |
Phi of K* |
[-3,-1,-1,0,1,4,2,2,2,1,3,0,1,1,4,1,2,4,1,2,0] |
Phi of -K* |
[-4,-1,0,1,1,3,3,2,1,1,4,0,0,1,3,0,0,1,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t |
Normalized Jones-Krushkal polynomial |
4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+25w^2z+35w |
Inner characteristic polynomial |
t^6+42t^4+27t^2+1 |
Outer characteristic polynomial |
t^7+70t^5+75t^3+11t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 14*K1**2 - 6*K1*K2 - 2*K1*K3 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-256*K1**6 + 256*K1**4*K2**3 - 1024*K1**4*K2**2 + 2944*K1**4*K2 - 4368*K1**4 - 128*K1**3*K2**2*K3 + 736*K1**3*K2*K3 - 800*K1**3*K3 - 384*K1**2*K2**4 + 2720*K1**2*K2**3 - 9840*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 768*K1**2*K2*K4 + 11552*K1**2*K2 - 336*K1**2*K3**2 - 128*K1**2*K4**2 - 5984*K1**2 + 864*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 2752*K1*K2**2*K3 - 320*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 9528*K1*K2*K3 - 64*K1*K2*K4*K5 + 1352*K1*K3*K4 + 280*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 224*K2**4*K4 - 2488*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 128*K2**3*K6 - 1088*K2**2*K3**2 - 32*K2**2*K3*K7 - 312*K2**2*K4**2 + 3304*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 5480*K2**2 + 1112*K2*K3*K5 + 288*K2*K4*K6 + 16*K2*K5*K7 - 2584*K3**2 - 1092*K4**2 - 312*K5**2 - 64*K6**2 + 5786 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}]] |
If K is slice |
False |