Gauss code |
O1O2O3O4O5U6U4O6U3U5U1U2 |
R3 orbit |
{'O1O2O3O4O5U6U4O6U3U5U1U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U5U1U3O6U2U6 |
Gauss code of K* |
O1O2O3O4U3U4U1U5U2O6O5U6 |
Gauss code of -K* |
O1O2O3O4U5O6O5U3U6U4U1U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -1 0 2 -1],[ 1 0 1 -1 0 2 0],[-1 -1 0 -1 0 2 -2],[ 1 1 1 0 1 2 0],[ 0 0 0 -1 0 0 0],[-2 -2 -2 -2 0 0 -2],[ 1 0 2 0 0 2 0]] |
Primitive based matrix |
[[ 0 2 1 0 -1 -1 -1],[-2 0 -2 0 -2 -2 -2],[-1 2 0 0 -1 -1 -2],[ 0 0 0 0 0 -1 0],[ 1 2 1 0 0 -1 0],[ 1 2 1 1 1 0 0],[ 1 2 2 0 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,1,1,1,2,0,2,2,2,0,1,1,2,0,1,0,1,0,0] |
Phi over symmetry |
[-2,-1,0,1,1,1,-1,2,1,1,1,1,0,1,1,1,0,1,0,0,1] |
Phi of -K |
[-1,-1,-1,0,1,2,-1,0,0,1,1,0,1,1,1,1,0,1,1,2,-1] |
Phi of K* |
[-2,-1,0,1,1,1,-1,2,1,1,1,1,0,1,1,1,0,1,0,0,1] |
Phi of -K* |
[-1,-1,-1,0,1,2,-1,0,0,1,2,0,1,1,2,0,2,2,0,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+24t^4+37t^2+4 |
Outer characteristic polynomial |
t^7+32t^5+60t^3+9t |
Flat arrow polynomial |
4*K1**3 - 14*K1**2 - 8*K1*K2 + K1 + 7*K2 + 3*K3 + 8 |
2-strand cable arrow polynomial |
-1024*K1**6 - 1984*K1**4*K2**2 + 3488*K1**4*K2 - 6256*K1**4 + 2144*K1**3*K2*K3 + 256*K1**3*K3*K4 - 672*K1**3*K3 - 1024*K1**2*K2**4 + 3744*K1**2*K2**3 + 64*K1**2*K2**2*K4 - 12640*K1**2*K2**2 - 1024*K1**2*K2*K4 + 10760*K1**2*K2 - 1904*K1**2*K3**2 - 32*K1**2*K3*K5 - 480*K1**2*K4**2 - 1452*K1**2 + 2336*K1*K2**3*K3 + 288*K1*K2**2*K3*K4 - 2336*K1*K2**2*K3 - 448*K1*K2**2*K5 - 576*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 9392*K1*K2*K3 - 96*K1*K2*K4*K5 + 1784*K1*K3*K4 + 328*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 3272*K2**4 - 32*K2**3*K6 - 1776*K2**2*K3**2 - 384*K2**2*K4**2 + 2576*K2**2*K4 - 1906*K2**2 - 64*K2*K3**2*K4 + 984*K2*K3*K5 + 240*K2*K4*K6 - 1648*K3**2 - 550*K4**2 - 100*K5**2 - 14*K6**2 + 3276 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice |
False |