Gauss code |
O1O2O3O4O5U6U4O6U3U2U1U5 |
R3 orbit |
{'O1O2O3O4O5U6U4O6U3U2U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U5U4U3O6U2U6 |
Gauss code of K* |
O1O2O3O4U3U2U1U5U4O6O5U6 |
Gauss code of -K* |
O1O2O3O4U5O6O5U1U6U4U3U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 -1 0 4 -1],[ 1 0 0 0 1 4 0],[ 1 0 0 0 1 3 0],[ 1 0 0 0 1 2 0],[ 0 -1 -1 -1 0 0 0],[-4 -4 -3 -2 0 0 -4],[ 1 0 0 0 0 4 0]] |
Primitive based matrix |
[[ 0 4 0 -1 -1 -1 -1],[-4 0 0 -2 -3 -4 -4],[ 0 0 0 -1 -1 0 -1],[ 1 2 1 0 0 0 0],[ 1 3 1 0 0 0 0],[ 1 4 0 0 0 0 0],[ 1 4 1 0 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,0,1,1,1,1,0,2,3,4,4,1,1,0,1,0,0,0,0,0,0] |
Phi over symmetry |
[-4,0,1,1,1,1,0,2,3,4,4,1,1,0,1,0,0,0,0,0,0] |
Phi of -K |
[-1,-1,-1,-1,0,4,0,0,0,0,1,0,0,0,2,0,0,3,1,1,4] |
Phi of K* |
[-4,0,1,1,1,1,4,1,1,2,3,0,1,0,0,0,0,0,0,0,0] |
Phi of -K* |
[-1,-1,-1,-1,0,4,0,0,0,0,4,0,0,1,2,0,1,3,1,4,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+4t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+4w^3z^2-12w^3z+17w^2z+11w |
Inner characteristic polynomial |
t^6+48t^4+54t^2 |
Outer characteristic polynomial |
t^7+68t^5+116t^3+6t |
Flat arrow polynomial |
-2*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 + 2*K2 + 2*K3 + K4 + 2 |
2-strand cable arrow polynomial |
-432*K1**4 + 192*K1**3*K2*K3 - 192*K1**3*K3 - 720*K1**2*K2**2 - 128*K1**2*K2*K4 + 1776*K1**2*K2 - 784*K1**2*K3**2 - 128*K1**2*K3*K5 - 2244*K1**2 - 96*K1*K2**2*K3 - 32*K1*K2**2*K5 - 448*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 2560*K1*K2*K3 + 1456*K1*K3*K4 + 528*K1*K4*K5 + 128*K1*K5*K6 - 72*K2**4 - 32*K2**3*K6 - 64*K2**2*K3**2 - 16*K2**2*K4**2 + 760*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 2096*K2**2 + 672*K2*K3*K5 + 184*K2*K4*K6 + 32*K2*K5*K7 + 8*K2*K6*K8 + 32*K3**2*K6 - 1480*K3**2 - 968*K4**2 - 472*K5**2 - 128*K6**2 - 12*K7**2 - 2*K8**2 + 2368 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}], [{6}, {4, 5}, {1, 3}, {2}]] |
If K is slice |
False |