Min(phi) over symmetries of the knot is: [-3,-2,0,1,1,3,0,3,1,2,3,2,0,1,2,1,0,2,0,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.462'] |
Arrow polynomial of the knot is: 8*K1**3 + 4*K1**2*K2 - 4*K1**2 - 8*K1*K2 - 2*K1*K3 - 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.462'] |
Outer characteristic polynomial of the knot is: t^7+76t^5+96t^3+15t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.462'] |
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 96*K1**4*K2 - 240*K1**4 + 128*K1**3*K2**3*K3 + 640*K1**3*K2*K3 - 64*K1**3*K3 - 1088*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 2112*K1**2*K2**3 - 320*K1**2*K2**2*K3**2 + 160*K1**2*K2**2*K4 - 7616*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 1216*K1**2*K2*K4 + 5448*K1**2*K2 - 512*K1**2*K3**2 - 80*K1**2*K4**2 - 3884*K1**2 - 384*K1*K2**4*K3 - 128*K1*K2**4*K5 + 2528*K1*K2**3*K3 + 704*K1*K2**2*K3*K4 - 1632*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 352*K1*K2**2*K5 + 128*K1*K2*K3**3 - 416*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7520*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1816*K1*K3*K4 + 248*K1*K4*K5 + 8*K1*K5*K6 - 192*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 576*K2**4*K4 - 2368*K2**4 + 160*K2**3*K3*K5 + 32*K2**3*K4*K6 + 128*K2**2*K3**2*K4 - 1584*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 608*K2**2*K4**2 - 32*K2**2*K4*K8 + 2216*K2**2*K4 - 80*K2**2*K5**2 - 8*K2**2*K6**2 - 2136*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 792*K2*K3*K5 + 248*K2*K4*K6 + 24*K2*K5*K7 + 8*K2*K6*K8 - 16*K3**4 - 32*K3**2*K4**2 + 16*K3**2*K6 - 2124*K3**2 + 24*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1030*K4**2 - 172*K5**2 - 16*K6**2 - 4*K7**2 - 2*K8**2 + 3310 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.462'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4719', 'vk6.5036', 'vk6.6244', 'vk6.6696', 'vk6.8220', 'vk6.8660', 'vk6.9602', 'vk6.9929', 'vk6.20292', 'vk6.21627', 'vk6.27588', 'vk6.29142', 'vk6.39006', 'vk6.41256', 'vk6.45774', 'vk6.47453', 'vk6.48759', 'vk6.48962', 'vk6.49560', 'vk6.49774', 'vk6.50773', 'vk6.50981', 'vk6.51254', 'vk6.51459', 'vk6.57151', 'vk6.58337', 'vk6.61777', 'vk6.62898', 'vk6.66772', 'vk6.67650', 'vk6.69420', 'vk6.70144'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U6U4O6U1U2U5U3 |
R3 orbit | {'O1O2O3O4O5U6U4O6U1U2U5U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U3U1U4U5O6U2U6 |
Gauss code of K* | O1O2O3O4U1U2U4U5U3O6O5U6 |
Gauss code of -K* | O1O2O3O4U5O6O5U2U6U1U3U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 2 0 3 -1],[ 3 0 1 3 1 3 2],[ 1 -1 0 2 1 2 0],[-2 -3 -2 0 0 1 -3],[ 0 -1 -1 0 0 0 0],[-3 -3 -2 -1 0 0 -3],[ 1 -2 0 3 0 3 0]] |
Primitive based matrix | [[ 0 3 2 0 -1 -1 -3],[-3 0 -1 0 -2 -3 -3],[-2 1 0 0 -2 -3 -3],[ 0 0 0 0 -1 0 -1],[ 1 2 2 1 0 0 -1],[ 1 3 3 0 0 0 -2],[ 3 3 3 1 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-2,0,1,1,3,1,0,2,3,3,0,2,3,3,1,0,1,0,1,2] |
Phi over symmetry | [-3,-2,0,1,1,3,0,3,1,2,3,2,0,1,2,1,0,2,0,0,1] |
Phi of -K | [-3,-1,-1,0,2,3,0,1,2,2,3,0,1,0,1,0,1,2,2,3,0] |
Phi of K* | [-3,-2,0,1,1,3,0,3,1,2,3,2,0,1,2,1,0,2,0,0,1] |
Phi of -K* | [-3,-1,-1,0,2,3,1,2,1,3,3,0,1,2,2,0,3,3,0,0,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2-8w^3z+25w^2z+19w |
Inner characteristic polynomial | t^6+52t^4+51t^2+4 |
Outer characteristic polynomial | t^7+76t^5+96t^3+15t |
Flat arrow polynomial | 8*K1**3 + 4*K1**2*K2 - 4*K1**2 - 8*K1*K2 - 2*K1*K3 - 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
2-strand cable arrow polynomial | -256*K1**4*K2**2 + 96*K1**4*K2 - 240*K1**4 + 128*K1**3*K2**3*K3 + 640*K1**3*K2*K3 - 64*K1**3*K3 - 1088*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 2112*K1**2*K2**3 - 320*K1**2*K2**2*K3**2 + 160*K1**2*K2**2*K4 - 7616*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 1216*K1**2*K2*K4 + 5448*K1**2*K2 - 512*K1**2*K3**2 - 80*K1**2*K4**2 - 3884*K1**2 - 384*K1*K2**4*K3 - 128*K1*K2**4*K5 + 2528*K1*K2**3*K3 + 704*K1*K2**2*K3*K4 - 1632*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 352*K1*K2**2*K5 + 128*K1*K2*K3**3 - 416*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 7520*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1816*K1*K3*K4 + 248*K1*K4*K5 + 8*K1*K5*K6 - 192*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 576*K2**4*K4 - 2368*K2**4 + 160*K2**3*K3*K5 + 32*K2**3*K4*K6 + 128*K2**2*K3**2*K4 - 1584*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 608*K2**2*K4**2 - 32*K2**2*K4*K8 + 2216*K2**2*K4 - 80*K2**2*K5**2 - 8*K2**2*K6**2 - 2136*K2**2 - 96*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 792*K2*K3*K5 + 248*K2*K4*K6 + 24*K2*K5*K7 + 8*K2*K6*K8 - 16*K3**4 - 32*K3**2*K4**2 + 16*K3**2*K6 - 2124*K3**2 + 24*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1030*K4**2 - 172*K5**2 - 16*K6**2 - 4*K7**2 - 2*K8**2 + 3310 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |