Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.459

Min(phi) over symmetries of the knot is: [-4,0,1,1,1,1,1,1,3,4,4,0,1,0,1,0,-1,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.459']
Arrow polynomial of the knot is: -4*K1*K2 + 2*K1 - 2*K2**2 + 2*K3 + K4 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.87', '6.88', '6.184', '6.302', '6.459', '6.467', '6.506']
Outer characteristic polynomial of the knot is: t^7+66t^5+105t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.459']
2-strand cable arrow polynomial of the knot is: -976*K1**4 + 224*K1**3*K2*K3 + 64*K1**3*K3*K4 - 672*K1**3*K3 + 96*K1**2*K2**2*K4 - 704*K1**2*K2**2 - 544*K1**2*K2*K4 + 2632*K1**2*K2 - 496*K1**2*K3**2 - 160*K1**2*K4**2 - 1980*K1**2 - 64*K1*K2**2*K3 - 64*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 2336*K1*K2*K3 + 1152*K1*K3*K4 + 328*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**4 - 48*K2**2*K4**2 + 496*K2**2*K4 - 1596*K2**2 + 232*K2*K3*K5 + 120*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 + 8*K3**2*K6 - 1008*K3**2 + 24*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 668*K4**2 - 200*K5**2 - 60*K6**2 - 12*K7**2 - 2*K8**2 + 1788
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.459']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11494', 'vk6.11805', 'vk6.12822', 'vk6.13151', 'vk6.13394', 'vk6.13487', 'vk6.13678', 'vk6.13776', 'vk6.14203', 'vk6.14450', 'vk6.15675', 'vk6.16127', 'vk6.16767', 'vk6.16782', 'vk6.16883', 'vk6.19040', 'vk6.19313', 'vk6.19606', 'vk6.22481', 'vk6.23195', 'vk6.23264', 'vk6.23789', 'vk6.26499', 'vk6.28386', 'vk6.33149', 'vk6.33211', 'vk6.33305', 'vk6.35182', 'vk6.36030', 'vk6.40028', 'vk6.40292', 'vk6.42673', 'vk6.42688', 'vk6.44737', 'vk6.46759', 'vk6.48016', 'vk6.52257', 'vk6.53414', 'vk6.53570', 'vk6.53700']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U3O6U4U2U1U5
R3 orbit {'O1O2O3O4O5U6U3O6U4U2U1U5', 'O1O2O3O4O5U4U6U3O6U2U1U5'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U1U5U4U2O6U3U6
Gauss code of K* O1O2O3O4U3U2U5U1U4O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U1U4U6U3U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 -1 0 4 -1],[ 1 0 0 0 1 4 0],[ 1 0 0 0 1 3 0],[ 1 0 0 0 0 1 1],[ 0 -1 -1 0 0 1 0],[-4 -4 -3 -1 -1 0 -4],[ 1 0 0 -1 0 4 0]]
Primitive based matrix [[ 0 4 0 -1 -1 -1 -1],[-4 0 -1 -1 -3 -4 -4],[ 0 1 0 0 -1 0 -1],[ 1 1 0 0 0 1 0],[ 1 3 1 0 0 0 0],[ 1 4 0 -1 0 0 0],[ 1 4 1 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,0,1,1,1,1,1,1,3,4,4,0,1,0,1,0,-1,0,0,0,0]
Phi over symmetry [-4,0,1,1,1,1,1,1,3,4,4,0,1,0,1,0,-1,0,0,0,0]
Phi of -K [-1,-1,-1,-1,0,4,-1,0,0,1,4,0,0,1,1,0,0,1,0,2,3]
Phi of K* [-4,0,1,1,1,1,3,1,1,2,4,0,1,0,1,0,0,0,0,-1,0]
Phi of -K* [-1,-1,-1,-1,0,4,-1,0,0,0,4,0,0,0,1,0,1,3,1,4,1]
Symmetry type of based matrix c
u-polynomial -t^4+4t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial 4w^3z^2+17w^2z+19w
Inner characteristic polynomial t^6+46t^4+63t^2+1
Outer characteristic polynomial t^7+66t^5+105t^3+4t
Flat arrow polynomial -4*K1*K2 + 2*K1 - 2*K2**2 + 2*K3 + K4 + 2
2-strand cable arrow polynomial -976*K1**4 + 224*K1**3*K2*K3 + 64*K1**3*K3*K4 - 672*K1**3*K3 + 96*K1**2*K2**2*K4 - 704*K1**2*K2**2 - 544*K1**2*K2*K4 + 2632*K1**2*K2 - 496*K1**2*K3**2 - 160*K1**2*K4**2 - 1980*K1**2 - 64*K1*K2**2*K3 - 64*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 2336*K1*K2*K3 + 1152*K1*K3*K4 + 328*K1*K4*K5 + 16*K1*K5*K6 - 32*K2**4 - 48*K2**2*K4**2 + 496*K2**2*K4 - 1596*K2**2 + 232*K2*K3*K5 + 120*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 + 8*K3**2*K6 - 1008*K3**2 + 24*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 668*K4**2 - 200*K5**2 - 60*K6**2 - 12*K7**2 - 2*K8**2 + 1788
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact