Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.456

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,3,3,3,0,2,2,2,-1,0,1,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.456']
Arrow polynomial of the knot is: -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.136', '6.207', '6.342', '6.370', '6.376', '6.442', '6.456', '6.539', '6.631', '6.636', '6.674', '6.679', '6.705', '6.740', '6.760', '6.794', '6.795', '6.1369']
Outer characteristic polynomial of the knot is: t^7+64t^5+125t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.456']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 256*K1**4*K2**2 + 512*K1**4*K2 - 704*K1**4 + 288*K1**3*K2*K3 - 816*K1**2*K2**2 + 976*K1**2*K2 - 192*K1**2*K3**2 - 288*K1**2 + 880*K1*K2*K3 + 192*K1*K3*K4 + 8*K1*K4*K5 - 96*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 224*K2**2*K4 - 662*K2**2 + 168*K2*K3*K5 + 16*K2*K4*K6 + 24*K3**2*K6 - 412*K3**2 - 164*K4**2 - 76*K5**2 - 18*K6**2 + 706
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.456']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11042', 'vk6.11122', 'vk6.11565', 'vk6.11905', 'vk6.12208', 'vk6.12317', 'vk6.13220', 'vk6.19237', 'vk6.19316', 'vk6.19532', 'vk6.19611', 'vk6.22393', 'vk6.22712', 'vk6.22814', 'vk6.26045', 'vk6.26084', 'vk6.26508', 'vk6.28421', 'vk6.30619', 'vk6.30716', 'vk6.31347', 'vk6.31357', 'vk6.31759', 'vk6.31927', 'vk6.32523', 'vk6.32924', 'vk6.34761', 'vk6.38118', 'vk6.40135', 'vk6.40156', 'vk6.42376', 'vk6.44640', 'vk6.44746', 'vk6.46665', 'vk6.52339', 'vk6.52601', 'vk6.52817', 'vk6.56628', 'vk6.64718', 'vk6.66282']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U3O6U2U5U1U4
R3 orbit {'O1O2O3O4U5U2O5U1U6U3O6U4', 'O1O2O3O4O5U6U3O6U2U5U1U4'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U2U5U1U4O6U3U6
Gauss code of K* O1O2O3O4U3U1U5U4U2O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U3U1U6U4U2
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 -1 3 2 -1],[ 1 0 -1 0 3 2 0],[ 2 1 0 1 3 2 1],[ 1 0 -1 0 1 0 1],[-3 -3 -3 -1 0 0 -3],[-2 -2 -2 0 0 0 -2],[ 1 0 -1 -1 3 2 0]]
Primitive based matrix [[ 0 3 2 -1 -1 -1 -2],[-3 0 0 -1 -3 -3 -3],[-2 0 0 0 -2 -2 -2],[ 1 1 0 0 1 0 -1],[ 1 3 2 -1 0 0 -1],[ 1 3 2 0 0 0 -1],[ 2 3 2 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,1,1,1,2,0,1,3,3,3,0,2,2,2,-1,0,1,0,1,1]
Phi over symmetry [-3,-2,1,1,1,2,0,1,3,3,3,0,2,2,2,-1,0,1,0,1,1]
Phi of -K [-2,-1,-1,-1,2,3,0,0,0,2,2,-1,0,3,3,0,1,1,1,1,1]
Phi of K* [-3,-2,1,1,1,2,1,1,1,3,2,1,1,3,2,0,-1,0,0,0,0]
Phi of -K* [-2,-1,-1,-1,2,3,1,1,1,2,3,-1,0,2,3,0,0,1,2,3,0]
Symmetry type of based matrix c
u-polynomial -t^3+3t
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial 9w^2z+19w
Inner characteristic polynomial t^6+44t^4+75t^2
Outer characteristic polynomial t^7+64t^5+125t^3
Flat arrow polynomial -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -256*K1**6 - 256*K1**4*K2**2 + 512*K1**4*K2 - 704*K1**4 + 288*K1**3*K2*K3 - 816*K1**2*K2**2 + 976*K1**2*K2 - 192*K1**2*K3**2 - 288*K1**2 + 880*K1*K2*K3 + 192*K1*K3*K4 + 8*K1*K4*K5 - 96*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 224*K2**2*K4 - 662*K2**2 + 168*K2*K3*K5 + 16*K2*K4*K6 + 24*K3**2*K6 - 412*K3**2 - 164*K4**2 - 76*K5**2 - 18*K6**2 + 706
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {2, 3}]]
If K is slice False
Contact