Gauss code |
O1O2O3O4O5U6U3O6U2U4U1U5 |
R3 orbit |
{'O1O2O3O4O5U6U3O6U2U4U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U5U2U4O6U3U6 |
Gauss code of K* |
O1O2O3O4U3U1U5U2U4O6O5U6 |
Gauss code of -K* |
O1O2O3O4U5O6O5U1U3U6U4U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 -1 1 4 -1],[ 1 0 -1 0 2 4 0],[ 2 1 0 1 2 3 1],[ 1 0 -1 0 0 1 1],[-1 -2 -2 0 0 1 -1],[-4 -4 -3 -1 -1 0 -4],[ 1 0 -1 -1 1 4 0]] |
Primitive based matrix |
[[ 0 4 1 -1 -1 -1 -2],[-4 0 -1 -1 -4 -4 -3],[-1 1 0 0 -1 -2 -2],[ 1 1 0 0 1 0 -1],[ 1 4 1 -1 0 0 -1],[ 1 4 2 0 0 0 -1],[ 2 3 2 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,1,1,1,2,1,1,4,4,3,0,1,2,2,-1,0,1,0,1,1] |
Phi over symmetry |
[-4,-1,1,1,1,2,1,1,4,4,3,0,1,2,2,-1,0,1,0,1,1] |
Phi of -K |
[-2,-1,-1,-1,1,4,0,0,0,1,3,-1,0,2,4,0,1,1,0,1,2] |
Phi of K* |
[-4,-1,1,1,1,2,2,1,1,4,3,0,1,2,1,0,0,0,-1,0,0] |
Phi of -K* |
[-2,-1,-1,-1,1,4,1,1,1,2,3,-1,0,1,4,0,0,1,2,4,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+t^2+2t |
Normalized Jones-Krushkal polynomial |
3z^2+22z+33 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+22w^2z+33w |
Inner characteristic polynomial |
t^6+56t^4+122t^2+4 |
Outer characteristic polynomial |
t^7+80t^5+203t^3+9t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 14*K1**2 - 8*K1*K2 + K1 - 2*K2**2 + 5*K2 + 3*K3 + 8 |
2-strand cable arrow polynomial |
-192*K1**6 - 128*K1**4*K2**2 + 1024*K1**4*K2 - 3344*K1**4 + 672*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1056*K1**3*K3 - 128*K1**2*K2**4 + 576*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5552*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 544*K1**2*K2*K4 + 9392*K1**2*K2 - 1424*K1**2*K3**2 - 32*K1**2*K3*K5 - 208*K1**2*K4**2 - 5536*K1**2 + 608*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 1664*K1*K2**2*K3 - 128*K1*K2**2*K5 + 192*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 480*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 8480*K1*K2*K3 - 32*K1*K3**2*K5 + 2064*K1*K3*K4 + 240*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1352*K2**4 + 32*K2**3*K3*K5 - 32*K2**3*K6 + 64*K2**2*K3**2*K4 - 1344*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 288*K2**2*K4**2 + 1888*K2**2*K4 - 4538*K2**2 - 32*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 928*K2*K3*K5 + 152*K2*K4*K6 - 160*K3**4 - 80*K3**2*K4**2 + 88*K3**2*K6 - 2532*K3**2 + 48*K3*K4*K7 - 8*K4**4 - 874*K4**2 - 172*K5**2 - 30*K6**2 + 4952 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}]] |
If K is slice |
False |