Gauss code |
O1O2O3O4O5U6U2O6U4U3U1U5 |
R3 orbit |
{'O1O2O3O4O5U6U2O6U4U3U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U5U3U2O6U4U6 |
Gauss code of K* |
O1O2O3O4U3U5U2U1U4O6O5U6 |
Gauss code of -K* |
O1O2O3O4U5O6O5U1U4U3U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 0 0 4 -1],[ 1 0 -1 1 1 4 0],[ 2 1 0 1 0 2 2],[ 0 -1 -1 0 0 2 0],[ 0 -1 0 0 0 1 0],[-4 -4 -2 -2 -1 0 -4],[ 1 0 -2 0 0 4 0]] |
Primitive based matrix |
[[ 0 4 0 0 -1 -1 -2],[-4 0 -1 -2 -4 -4 -2],[ 0 1 0 0 0 -1 0],[ 0 2 0 0 0 -1 -1],[ 1 4 0 0 0 0 -2],[ 1 4 1 1 0 0 -1],[ 2 2 0 1 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,0,0,1,1,2,1,2,4,4,2,0,0,1,0,0,1,1,0,2,1] |
Phi over symmetry |
[-4,0,0,1,1,2,1,2,4,4,2,0,0,1,0,0,1,1,0,2,1] |
Phi of -K |
[-2,-1,-1,0,0,4,-1,0,1,2,4,0,1,1,1,0,0,1,0,2,3] |
Phi of K* |
[-4,0,0,1,1,2,2,3,1,1,4,0,0,1,1,0,1,2,0,0,-1] |
Phi of -K* |
[-2,-1,-1,0,0,4,1,2,0,1,2,0,1,1,4,0,0,4,0,1,2] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+t^2+2t |
Normalized Jones-Krushkal polynomial |
5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+24w^2z+29w |
Inner characteristic polynomial |
t^6+49t^4+72t^2+4 |
Outer characteristic polynomial |
t^7+71t^5+111t^3+9t |
Flat arrow polynomial |
-4*K1*K2 - 2*K1*K3 + 2*K1 + K2 + 2*K3 + K4 + 1 |
2-strand cable arrow polynomial |
416*K1**4*K2 - 2192*K1**4 + 352*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1728*K1**3*K3 + 96*K1**2*K2**2*K4 - 1440*K1**2*K2**2 - 960*K1**2*K2*K4 + 6576*K1**2*K2 - 528*K1**2*K3**2 - 128*K1**2*K4**2 - 5176*K1**2 + 64*K1*K2**3*K3 - 448*K1*K2**2*K3 - 256*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 5624*K1*K2*K3 - 32*K1*K3**2*K5 + 1824*K1*K3*K4 + 472*K1*K4*K5 + 48*K1*K5*K6 - 64*K2**4 - 32*K2**3*K6 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 1136*K2**2*K4 - 16*K2**2*K5**2 - 8*K2**2*K6**2 - 4184*K2**2 - 32*K2*K3**2*K4 + 720*K2*K3*K5 + 136*K2*K4*K6 + 24*K2*K5*K7 + 8*K2*K6*K8 - 64*K3**4 + 160*K3**2*K6 - 2404*K3**2 + 8*K3*K4*K7 - 1094*K4**2 - 392*K5**2 - 128*K6**2 - 12*K7**2 - 2*K8**2 + 4246 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {3}, {1, 2}]] |
If K is slice |
False |