Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.442

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,1,-1,0,0,0,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.442']
Arrow polynomial of the knot is: -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.136', '6.207', '6.342', '6.370', '6.376', '6.442', '6.456', '6.539', '6.631', '6.636', '6.674', '6.679', '6.705', '6.740', '6.760', '6.794', '6.795', '6.1369']
Outer characteristic polynomial of the knot is: t^7+62t^5+65t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.442']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 64*K1**4*K2 - 576*K1**4 - 400*K1**2*K2**2 + 800*K1**2*K2 - 288*K1**2*K3**2 - 48*K1**2*K4**2 - 300*K1**2 + 728*K1*K2*K3 + 352*K1*K3*K4 + 40*K1*K4*K5 - 48*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 96*K2**2*K4 - 414*K2**2 + 72*K2*K3*K5 + 8*K2*K4*K6 - 300*K3**2 - 136*K4**2 - 32*K5**2 - 2*K6**2 + 502
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.442']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11257', 'vk6.11337', 'vk6.12518', 'vk6.12631', 'vk6.13864', 'vk6.13959', 'vk6.14138', 'vk6.14363', 'vk6.14939', 'vk6.15062', 'vk6.15590', 'vk6.16062', 'vk6.16349', 'vk6.16391', 'vk6.17435', 'vk6.22592', 'vk6.22625', 'vk6.22766', 'vk6.23947', 'vk6.24086', 'vk6.24180', 'vk6.25973', 'vk6.26139', 'vk6.26365', 'vk6.28315', 'vk6.30931', 'vk6.31056', 'vk6.31227', 'vk6.31578', 'vk6.33683', 'vk6.34640', 'vk6.34711', 'vk6.34729', 'vk6.35557', 'vk6.36008', 'vk6.36247', 'vk6.37643', 'vk6.38090', 'vk6.39943', 'vk6.40124', 'vk6.42270', 'vk6.44554', 'vk6.44576', 'vk6.44800', 'vk6.52007', 'vk6.54399', 'vk6.56530', 'vk6.59052', 'vk6.59150', 'vk6.64567']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U2O6U3U5U1U4
R3 orbit {'O1O2O3O4O5U6U2O6U3U5U1U4', 'O1O2O3O4U5U1O5U2U6U3O6U4', 'O1O2O3O4U2U5U1O5U6U3O6U4', 'O1O2O3O4O5U3U6U2O6U5U1U4'}
R3 orbit length 4
Gauss code of -K O1O2O3O4O5U2U5U1U3O6U4U6
Gauss code of K* O1O2O3O4U3U5U1U4U2O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U3U1U4U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 -1 3 2 -1],[ 1 0 -1 0 3 2 0],[ 2 1 0 0 2 1 2],[ 1 0 0 0 2 1 1],[-3 -3 -2 -2 0 0 -3],[-2 -2 -1 -1 0 0 -2],[ 1 0 -2 -1 3 2 0]]
Primitive based matrix [[ 0 3 2 -1 -1 -1 -2],[-3 0 0 -2 -3 -3 -2],[-2 0 0 -1 -2 -2 -1],[ 1 2 1 0 1 0 0],[ 1 3 2 -1 0 0 -2],[ 1 3 2 0 0 0 -1],[ 2 2 1 0 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,1,-1,0,0,0,2,1]
Phi over symmetry [-3,-2,1,1,1,2,0,2,3,3,2,1,2,2,1,-1,0,0,0,2,1]
Phi of -K [-2,-1,-1,-1,2,3,-1,0,1,3,3,0,1,1,1,0,1,1,2,2,1]
Phi of K* [-3,-2,1,1,1,2,1,1,1,2,3,1,1,2,3,0,-1,-1,0,0,1]
Phi of -K* [-2,-1,-1,-1,2,3,0,1,2,1,2,0,1,1,2,0,2,3,2,3,0]
Symmetry type of based matrix c
u-polynomial -t^3+3t
Normalized Jones-Krushkal polynomial 8z+17
Enhanced Jones-Krushkal polynomial 8w^2z+17w
Inner characteristic polynomial t^6+42t^4+41t^2
Outer characteristic polynomial t^7+62t^5+65t^3
Flat arrow polynomial -4*K1**2 - 2*K1*K2 + K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -64*K1**6 + 64*K1**4*K2 - 576*K1**4 - 400*K1**2*K2**2 + 800*K1**2*K2 - 288*K1**2*K3**2 - 48*K1**2*K4**2 - 300*K1**2 + 728*K1*K2*K3 + 352*K1*K3*K4 + 40*K1*K4*K5 - 48*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 96*K2**2*K4 - 414*K2**2 + 72*K2*K3*K5 + 8*K2*K4*K6 - 300*K3**2 - 136*K4**2 - 32*K5**2 - 2*K6**2 + 502
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {5}, {3, 4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {5}, {1, 4}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}]]
If K is slice False
Contact