Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.427

Min(phi) over symmetries of the knot is: [-4,-1,0,1,1,3,1,3,1,2,4,1,1,1,2,1,1,3,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.427']
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 10*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.290', '6.427']
Outer characteristic polynomial of the knot is: t^7+84t^5+70t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.427']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 256*K1**4*K2**2 + 1536*K1**4*K2 - 3824*K1**4 - 512*K1**3*K2**2*K3 + 1728*K1**3*K2*K3 - 1088*K1**3*K3 - 256*K1**2*K2**4 + 2496*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 + 320*K1**2*K2**2*K4 - 10064*K1**2*K2**2 + 160*K1**2*K2*K3**2 - 1344*K1**2*K2*K4 + 10800*K1**2*K2 - 528*K1**2*K3**2 - 96*K1**2*K4**2 - 5104*K1**2 - 256*K1*K2**3*K3*K4 + 2368*K1*K2**3*K3 + 672*K1*K2**2*K3*K4 - 2016*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 320*K1*K2**2*K5 + 32*K1*K2*K3**3 - 512*K1*K2*K3*K4 + 8280*K1*K2*K3 + 1072*K1*K3*K4 + 184*K1*K4*K5 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 256*K2**4*K4 - 2184*K2**4 + 160*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1312*K2**2*K3**2 - 360*K2**2*K4**2 + 1840*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 3324*K2**2 - 32*K2*K3**2*K4 + 440*K2*K3*K5 + 72*K2*K4*K6 - 1880*K3**2 - 536*K4**2 - 64*K5**2 - 4*K6**2 + 4310
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.427']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19933', 'vk6.19975', 'vk6.21170', 'vk6.21244', 'vk6.26886', 'vk6.26990', 'vk6.28644', 'vk6.28716', 'vk6.38313', 'vk6.38402', 'vk6.40448', 'vk6.40583', 'vk6.45187', 'vk6.45294', 'vk6.47017', 'vk6.47076', 'vk6.56726', 'vk6.56789', 'vk6.57824', 'vk6.57923', 'vk6.61147', 'vk6.61285', 'vk6.62392', 'vk6.62476', 'vk6.66423', 'vk6.66493', 'vk6.67195', 'vk6.67286', 'vk6.69078', 'vk6.69147', 'vk6.69861', 'vk6.69906']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U1O6U4U2U3U5
R3 orbit {'O1O2O3O4O5U6U1O6U4U2U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U1U3U4U2O6U5U6
Gauss code of K* O1O2O3O4U5U2U3U1U4O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U1U4U2U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 1 0 4 -1],[ 3 0 1 2 0 3 3],[ 1 -1 0 1 0 3 1],[-1 -2 -1 0 0 2 -1],[ 0 0 0 0 0 1 0],[-4 -3 -3 -2 -1 0 -4],[ 1 -3 -1 1 0 4 0]]
Primitive based matrix [[ 0 4 1 0 -1 -1 -3],[-4 0 -2 -1 -3 -4 -3],[-1 2 0 0 -1 -1 -2],[ 0 1 0 0 0 0 0],[ 1 3 1 0 0 1 -1],[ 1 4 1 0 -1 0 -3],[ 3 3 2 0 1 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-1,0,1,1,3,2,1,3,4,3,0,1,1,2,0,0,0,-1,1,3]
Phi over symmetry [-4,-1,0,1,1,3,1,3,1,2,4,1,1,1,2,1,1,3,-1,-1,1]
Phi of -K [-3,-1,-1,0,1,4,-1,1,3,2,4,1,1,1,1,1,1,2,1,3,1]
Phi of K* [-4,-1,0,1,1,3,1,3,1,2,4,1,1,1,2,1,1,3,-1,-1,1]
Phi of -K* [-3,-1,-1,0,1,4,1,3,0,2,3,1,0,1,3,0,1,4,0,1,2]
Symmetry type of based matrix c
u-polynomial -t^4+t^3+t
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+56t^4+24t^2
Outer characteristic polynomial t^7+84t^5+70t^3+7t
Flat arrow polynomial 4*K1**3 + 4*K1**2*K2 - 10*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 4*K2 + 5
2-strand cable arrow polynomial -128*K1**6 - 256*K1**4*K2**2 + 1536*K1**4*K2 - 3824*K1**4 - 512*K1**3*K2**2*K3 + 1728*K1**3*K2*K3 - 1088*K1**3*K3 - 256*K1**2*K2**4 + 2496*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 + 320*K1**2*K2**2*K4 - 10064*K1**2*K2**2 + 160*K1**2*K2*K3**2 - 1344*K1**2*K2*K4 + 10800*K1**2*K2 - 528*K1**2*K3**2 - 96*K1**2*K4**2 - 5104*K1**2 - 256*K1*K2**3*K3*K4 + 2368*K1*K2**3*K3 + 672*K1*K2**2*K3*K4 - 2016*K1*K2**2*K3 + 96*K1*K2**2*K4*K5 - 320*K1*K2**2*K5 + 32*K1*K2*K3**3 - 512*K1*K2*K3*K4 + 8280*K1*K2*K3 + 1072*K1*K3*K4 + 184*K1*K4*K5 - 32*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 256*K2**4*K4 - 2184*K2**4 + 160*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1312*K2**2*K3**2 - 360*K2**2*K4**2 + 1840*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 3324*K2**2 - 32*K2*K3**2*K4 + 440*K2*K3*K5 + 72*K2*K4*K6 - 1880*K3**2 - 536*K4**2 - 64*K5**2 - 4*K6**2 + 4310
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact