Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.426

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,-1,2,1,3,4,1,1,1,1,0,1,2,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.426']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1*K2 + 2*K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.426', '6.861', '6.1388']
Outer characteristic polynomial of the knot is: t^7+64t^5+126t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.426']
2-strand cable arrow polynomial of the knot is: 768*K1**4*K2 - 2528*K1**4 + 1088*K1**3*K2*K3 - 928*K1**3*K3 - 128*K1**2*K2**4 + 256*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3584*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 4800*K1**2*K2 - 2816*K1**2*K3**2 - 96*K1**2*K3*K5 - 32*K1**2*K4**2 - 2808*K1**2 + 384*K1*K2**3*K3 - 928*K1*K2**2*K3 - 128*K1*K2**2*K5 - 224*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 6784*K1*K2*K3 + 2728*K1*K3*K4 + 128*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 464*K2**4 - 32*K2**3*K6 - 512*K2**2*K3**2 - 88*K2**2*K4**2 + 736*K2**2*K4 - 2604*K2**2 + 456*K2*K3*K5 + 120*K2*K4*K6 + 32*K3**2*K6 - 2288*K3**2 - 732*K4**2 - 112*K5**2 - 52*K6**2 + 3050
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.426']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20140', 'vk6.20154', 'vk6.20162', 'vk6.20164', 'vk6.21432', 'vk6.21450', 'vk6.27252', 'vk6.27278', 'vk6.27286', 'vk6.27292', 'vk6.28914', 'vk6.28940', 'vk6.28948', 'vk6.38677', 'vk6.38695', 'vk6.38711', 'vk6.38721', 'vk6.40891', 'vk6.40901', 'vk6.47265', 'vk6.47282', 'vk6.47292', 'vk6.56973', 'vk6.56979', 'vk6.56990', 'vk6.57006', 'vk6.58127', 'vk6.62676', 'vk6.62684', 'vk6.67464', 'vk6.70038', 'vk6.70044']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U1O6U3U5U4U2
R3 orbit {'O1O2O3O4O5U6U1O6U3U5U4U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U4U2U1U3O6U5U6
Gauss code of K* O1O2O3O4U5U4U1U3U2O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U3U2U4U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 -1 2 2 -1],[ 3 0 3 0 2 1 3],[-1 -3 0 -2 1 1 -1],[ 1 0 2 0 2 1 1],[-2 -2 -1 -2 0 0 -2],[-2 -1 -1 -1 0 0 -2],[ 1 -3 1 -1 2 2 0]]
Primitive based matrix [[ 0 2 2 1 -1 -1 -3],[-2 0 0 -1 -1 -2 -1],[-2 0 0 -1 -2 -2 -2],[-1 1 1 0 -2 -1 -3],[ 1 1 2 2 0 1 0],[ 1 2 2 1 -1 0 -3],[ 3 1 2 3 0 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,1,3,0,1,1,2,1,1,2,2,2,2,1,3,-1,0,3]
Phi over symmetry [-3,-1,-1,1,2,2,-1,2,1,3,4,1,1,1,1,0,1,2,0,0,0]
Phi of -K [-3,-1,-1,1,2,2,-1,2,1,3,4,1,1,1,1,0,1,2,0,0,0]
Phi of K* [-2,-2,-1,1,1,3,0,0,1,1,3,0,1,2,4,1,0,1,-1,-1,2]
Phi of -K* [-3,-1,-1,1,2,2,0,3,3,1,2,1,2,1,2,1,2,2,1,1,0]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 8z^2+29z+27
Enhanced Jones-Krushkal polynomial 8w^3z^2+29w^2z+27w
Inner characteristic polynomial t^6+44t^4+54t^2
Outer characteristic polynomial t^7+64t^5+126t^3+7t
Flat arrow polynomial 4*K1**3 - 6*K1*K2 + 2*K3 + 1
2-strand cable arrow polynomial 768*K1**4*K2 - 2528*K1**4 + 1088*K1**3*K2*K3 - 928*K1**3*K3 - 128*K1**2*K2**4 + 256*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 3584*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 512*K1**2*K2*K4 + 4800*K1**2*K2 - 2816*K1**2*K3**2 - 96*K1**2*K3*K5 - 32*K1**2*K4**2 - 2808*K1**2 + 384*K1*K2**3*K3 - 928*K1*K2**2*K3 - 128*K1*K2**2*K5 - 224*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 6784*K1*K2*K3 + 2728*K1*K3*K4 + 128*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 464*K2**4 - 32*K2**3*K6 - 512*K2**2*K3**2 - 88*K2**2*K4**2 + 736*K2**2*K4 - 2604*K2**2 + 456*K2*K3*K5 + 120*K2*K4*K6 + 32*K3**2*K6 - 2288*K3**2 - 732*K4**2 - 112*K5**2 - 52*K6**2 + 3050
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact