Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.422

Min(phi) over symmetries of the knot is: [-3,-3,1,1,1,3,0,1,1,2,3,1,2,3,4,-1,-1,-1,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.422']
Arrow polynomial of the knot is: -2*K1*K2 + K1 + K3 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.1', '4.3', '6.59', '6.66', '6.112', '6.215', '6.297', '6.306', '6.346', '6.351', '6.352', '6.353', '6.368', '6.393', '6.398', '6.402', '6.420', '6.422', '6.524', '6.529', '6.630', '6.632', '6.633', '6.642', '6.684', '6.707', '6.708', '6.717', '6.719', '6.721', '6.722', '6.737', '6.793', '6.835', '6.837', '6.847', '6.849', '6.857', '6.858', '6.883', '6.902', '6.913', '6.1084', '6.1092', '6.1097', '6.1136', '6.1146', '6.1155', '6.1159', '6.1374', '7.349', '7.365', '7.690', '7.2260', '7.2269', '7.2612', '7.2624', '7.2972', '7.2975', '7.4214', '7.4542', '7.4546', '7.9686', '7.9695', '7.9947', '7.10639', '7.10643', '7.10829', '7.10833', '7.13433', '7.15124', '7.15128', '7.15638', '7.15647', '7.15703', '7.15845', '7.16115', '7.16120', '7.16150', '7.19418', '7.19470', '7.19474', '7.19871', '7.20310', '7.20362', '7.20421', '7.20424', '7.23942', '7.24011', '7.24100', '7.24114', '7.24116', '7.24445', '7.26258', '7.26318', '7.26811', '7.26827', '7.27967', '7.28040', '7.28124', '7.28138', '7.29092', '7.29107', '7.29452', '7.29853', '7.30091', '7.30098', '7.30140', '7.30193', '7.30339', '7.30350', '7.30354']
Outer characteristic polynomial of the knot is: t^7+91t^5+139t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.422']
2-strand cable arrow polynomial of the knot is: -128*K1**4 + 192*K1**2*K2**2*K4 - 1280*K1**2*K2**2 - 1376*K1**2*K2*K4 + 3096*K1**2*K2 - 128*K1**2*K3**2 - 352*K1**2*K4**2 - 3712*K1**2 - 320*K1*K2**2*K3 - 192*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 3448*K1*K2*K3 - 96*K1*K2*K4*K5 + 2096*K1*K3*K4 + 360*K1*K4*K5 + 32*K1*K5*K6 - 128*K2**4 - 64*K2**2*K3**2 - 72*K2**2*K4**2 + 1368*K2**2*K4 - 2982*K2**2 - 32*K2*K3**2*K4 + 296*K2*K3*K5 + 112*K2*K4*K6 + 8*K3**2*K6 - 1560*K3**2 - 1204*K4**2 - 160*K5**2 - 26*K6**2 + 2930
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.422']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19967', 'vk6.19971', 'vk6.21228', 'vk6.21236', 'vk6.26974', 'vk6.26982', 'vk6.28706', 'vk6.28710', 'vk6.38384', 'vk6.38392', 'vk6.40551', 'vk6.40567', 'vk6.45266', 'vk6.45282', 'vk6.47060', 'vk6.47068', 'vk6.56773', 'vk6.56781', 'vk6.57895', 'vk6.57911', 'vk6.61256', 'vk6.61270', 'vk6.62456', 'vk6.62464', 'vk6.66475', 'vk6.66479', 'vk6.67263', 'vk6.67271', 'vk6.69131', 'vk6.69139', 'vk6.69894', 'vk6.69898']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U1O6U3U2U5U4
R3 orbit {'O1O2O3O4O5U6U1O6U3U2U5U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U2U1U4U3O6U5U6
Gauss code of K* O1O2O3O4U5U2U1U4U3O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U2U1U4U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 -1 3 3 -1],[ 3 0 1 0 3 2 3],[ 1 -1 0 0 3 2 1],[ 1 0 0 0 2 1 1],[-3 -3 -3 -2 0 0 -3],[-3 -2 -2 -1 0 0 -3],[ 1 -3 -1 -1 3 3 0]]
Primitive based matrix [[ 0 3 3 -1 -1 -1 -3],[-3 0 0 -1 -2 -3 -2],[-3 0 0 -2 -3 -3 -3],[ 1 1 2 0 0 1 0],[ 1 2 3 0 0 1 -1],[ 1 3 3 -1 -1 0 -3],[ 3 2 3 0 1 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-3,1,1,1,3,0,1,2,3,2,2,3,3,3,0,-1,0,-1,1,3]
Phi over symmetry [-3,-3,1,1,1,3,0,1,1,2,3,1,2,3,4,-1,-1,-1,0,1,2]
Phi of -K [-3,-1,-1,-1,3,3,-1,1,2,3,4,1,1,1,1,0,1,2,2,3,0]
Phi of K* [-3,-3,1,1,1,3,0,1,1,2,3,1,2,3,4,-1,-1,-1,0,1,2]
Phi of -K* [-3,-1,-1,-1,3,3,0,1,3,2,3,0,1,1,2,1,2,3,3,3,0]
Symmetry type of based matrix c
u-polynomial -t^3+3t
Normalized Jones-Krushkal polynomial 7z^2+24z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+9w^3z^2-2w^3z+26w^2z+21w
Inner characteristic polynomial t^6+61t^4+57t^2+1
Outer characteristic polynomial t^7+91t^5+139t^3+9t
Flat arrow polynomial -2*K1*K2 + K1 + K3 + 1
2-strand cable arrow polynomial -128*K1**4 + 192*K1**2*K2**2*K4 - 1280*K1**2*K2**2 - 1376*K1**2*K2*K4 + 3096*K1**2*K2 - 128*K1**2*K3**2 - 352*K1**2*K4**2 - 3712*K1**2 - 320*K1*K2**2*K3 - 192*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 3448*K1*K2*K3 - 96*K1*K2*K4*K5 + 2096*K1*K3*K4 + 360*K1*K4*K5 + 32*K1*K5*K6 - 128*K2**4 - 64*K2**2*K3**2 - 72*K2**2*K4**2 + 1368*K2**2*K4 - 2982*K2**2 - 32*K2*K3**2*K4 + 296*K2*K3*K5 + 112*K2*K4*K6 + 8*K3**2*K6 - 1560*K3**2 - 1204*K4**2 - 160*K5**2 - 26*K6**2 + 2930
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact