Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.419

Min(phi) over symmetries of the knot is: [-3,-2,-1,1,2,3,0,1,3,3,3,0,2,1,1,1,2,2,2,3,0]
Flat knots (up to 7 crossings) with same phi are :['6.419']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+84t^5+141t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.419']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 256*K1**4*K2**2 + 512*K1**4*K2 - 976*K1**4 + 320*K1**3*K2*K3 - 96*K1**3*K3 - 320*K1**2*K2**4 + 512*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 2592*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 3312*K1**2*K2 - 112*K1**2*K3**2 - 32*K1**2*K4**2 - 1880*K1**2 + 704*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 608*K1*K2**2*K3 - 64*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2392*K1*K2*K3 + 336*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 528*K2**4 - 416*K2**2*K3**2 - 48*K2**2*K4**2 + 480*K2**2*K4 - 1286*K2**2 + 136*K2*K3*K5 + 8*K2*K4*K6 - 644*K3**2 - 180*K4**2 - 28*K5**2 - 2*K6**2 + 1554
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.419']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17009', 'vk6.17250', 'vk6.19983', 'vk6.20241', 'vk6.21156', 'vk6.21545', 'vk6.23417', 'vk6.26872', 'vk6.27006', 'vk6.27462', 'vk6.28636', 'vk6.29060', 'vk6.35490', 'vk6.38305', 'vk6.38416', 'vk6.38875', 'vk6.40432', 'vk6.41075', 'vk6.42919', 'vk6.45171', 'vk6.45302', 'vk6.45642', 'vk6.47009', 'vk6.47379', 'vk6.55194', 'vk6.56719', 'vk6.56797', 'vk6.57810', 'vk6.58211', 'vk6.59577', 'vk6.61301', 'vk6.62384', 'vk6.64993', 'vk6.66415', 'vk6.66509', 'vk6.67181', 'vk6.67549', 'vk6.68277', 'vk6.69155', 'vk6.69853']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U1O6U2U5U3U4
R3 orbit {'O1O2O3O4O5U2U6U1O6U5U3U4', 'O1O2O3O4O5U6U1O6U2U5U3U4'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U2U3U1U4O6U5U6
Gauss code of K* O1O2O3O4U5U1U3U4U2O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U3U1U2U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 1 3 2 -1],[ 3 0 0 2 3 1 3],[ 2 0 0 2 3 1 2],[-1 -2 -2 0 1 0 -1],[-3 -3 -3 -1 0 0 -3],[-2 -1 -1 0 0 0 -2],[ 1 -3 -2 1 3 2 0]]
Primitive based matrix [[ 0 3 2 1 -1 -2 -3],[-3 0 0 -1 -3 -3 -3],[-2 0 0 0 -2 -1 -1],[-1 1 0 0 -1 -2 -2],[ 1 3 2 1 0 -2 -3],[ 2 3 1 2 2 0 0],[ 3 3 1 2 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,1,2,3,0,1,3,3,3,0,2,1,1,1,2,2,2,3,0]
Phi over symmetry [-3,-2,-1,1,2,3,0,1,3,3,3,0,2,1,1,1,2,2,2,3,0]
Phi of -K [-3,-2,-1,1,2,3,1,-1,2,4,3,-1,1,3,2,1,1,1,1,1,1]
Phi of K* [-3,-2,-1,1,2,3,1,1,1,2,3,1,1,3,4,1,1,2,-1,-1,1]
Phi of -K* [-3,-2,-1,1,2,3,0,3,2,1,3,2,2,1,3,1,2,3,0,1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+56t^4+57t^2+1
Outer characteristic polynomial t^7+84t^5+141t^3+4t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -128*K1**6 - 256*K1**4*K2**2 + 512*K1**4*K2 - 976*K1**4 + 320*K1**3*K2*K3 - 96*K1**3*K3 - 320*K1**2*K2**4 + 512*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 2592*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 3312*K1**2*K2 - 112*K1**2*K3**2 - 32*K1**2*K4**2 - 1880*K1**2 + 704*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 608*K1*K2**2*K3 - 64*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2392*K1*K2*K3 + 336*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 528*K2**4 - 416*K2**2*K3**2 - 48*K2**2*K4**2 + 480*K2**2*K4 - 1286*K2**2 + 136*K2*K3*K5 + 8*K2*K4*K6 - 644*K3**2 - 180*K4**2 - 28*K5**2 - 2*K6**2 + 1554
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {2, 5}, {1, 4}]]
If K is slice False
Contact