Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.417

Min(phi) over symmetries of the knot is: [-4,-1,-1,1,2,3,1,2,1,3,4,0,1,1,2,1,2,3,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.417']
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.58', '6.76', '6.78', '6.90', '6.98', '6.154', '6.161', '6.162', '6.198', '6.280', '6.284', '6.345', '6.417', '6.421', '6.435', '6.511']
Outer characteristic polynomial of the knot is: t^7+96t^5+81t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.417']
2-strand cable arrow polynomial of the knot is: 24*K1**2*K2 - 928*K1**2*K3**2 - 48*K1**2*K6**2 - 656*K1**2 + 1312*K1*K2*K3 + 856*K1*K3*K4 + 32*K1*K4*K5 + 64*K1*K5*K6 + 40*K1*K6*K7 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 88*K2**2*K4 - 8*K2**2*K6**2 - 546*K2**2 + 152*K2*K3*K5 + 24*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 632*K3**2 - 262*K4**2 - 84*K5**2 - 38*K6**2 - 12*K7**2 - 2*K8**2 + 742
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.417']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16985', 'vk6.17226', 'vk6.19921', 'vk6.20217', 'vk6.21144', 'vk6.21509', 'vk6.23389', 'vk6.26840', 'vk6.26856', 'vk6.27413', 'vk6.28615', 'vk6.29026', 'vk6.35446', 'vk6.38276', 'vk6.38292', 'vk6.38827', 'vk6.40409', 'vk6.41020', 'vk6.42882', 'vk6.45151', 'vk6.45159', 'vk6.45594', 'vk6.46998', 'vk6.47356', 'vk6.55148', 'vk6.56704', 'vk6.56711', 'vk6.57794', 'vk6.58165', 'vk6.59524', 'vk6.61123', 'vk6.61561', 'vk6.62367', 'vk6.62736', 'vk6.64964', 'vk6.66406', 'vk6.67161', 'vk6.68256', 'vk6.69057', 'vk6.69842']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U6U1O6U2U4U3U5
R3 orbit {'O1O2O3O4O5U6U1O6U2U4U3U5', 'O1O2O3O4O5U2U6U1O6U4U3U5'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U1U3U2U4O6U5U6
Gauss code of K* O1O2O3O4U5U1U3U2U4O6O5U6
Gauss code of -K* O1O2O3O4U5O6O5U1U3U2U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 1 1 4 -1],[ 3 0 0 2 1 3 3],[ 2 0 0 2 1 3 2],[-1 -2 -2 0 0 2 -1],[-1 -1 -1 0 0 1 -1],[-4 -3 -3 -2 -1 0 -4],[ 1 -3 -2 1 1 4 0]]
Primitive based matrix [[ 0 4 1 1 -1 -2 -3],[-4 0 -1 -2 -4 -3 -3],[-1 1 0 0 -1 -1 -1],[-1 2 0 0 -1 -2 -2],[ 1 4 1 1 0 -2 -3],[ 2 3 1 2 2 0 0],[ 3 3 1 2 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-1,-1,1,2,3,1,2,4,3,3,0,1,1,1,1,2,2,2,3,0]
Phi over symmetry [-4,-1,-1,1,2,3,1,2,1,3,4,0,1,1,2,1,2,3,-1,-1,1]
Phi of -K [-3,-2,-1,1,1,4,1,-1,2,3,4,-1,1,2,3,1,1,1,0,1,2]
Phi of K* [-4,-1,-1,1,2,3,1,2,1,3,4,0,1,1,2,1,2,3,-1,-1,1]
Phi of -K* [-3,-2,-1,1,1,4,0,3,1,2,3,2,1,2,3,1,1,4,0,1,2]
Symmetry type of based matrix c
u-polynomial -t^4+t^3+t^2-t
Normalized Jones-Krushkal polynomial 7z+15
Enhanced Jones-Krushkal polynomial -4w^3z+11w^2z+15w
Inner characteristic polynomial t^6+64t^4+24t^2
Outer characteristic polynomial t^7+96t^5+81t^3
Flat arrow polynomial -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
2-strand cable arrow polynomial 24*K1**2*K2 - 928*K1**2*K3**2 - 48*K1**2*K6**2 - 656*K1**2 + 1312*K1*K2*K3 + 856*K1*K3*K4 + 32*K1*K4*K5 + 64*K1*K5*K6 + 40*K1*K6*K7 - 128*K2**2*K3**2 - 8*K2**2*K4**2 + 88*K2**2*K4 - 8*K2**2*K6**2 - 546*K2**2 + 152*K2*K3*K5 + 24*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 632*K3**2 - 262*K4**2 - 84*K5**2 - 38*K6**2 - 12*K7**2 - 2*K8**2 + 742
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}]]
If K is slice False
Contact