Gauss code |
O1O2O3O4O5U4U5O6U3U1U2U6 |
R3 orbit |
{'O1O2O3O4O5U4U5O6U3U1U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U4U5U3O6U1U2 |
Gauss code of K* |
O1O2O3O4U2U3U1U5U6O5O6U4 |
Gauss code of -K* |
O1O2O3O4U1O5O6U5U6U4U2U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 -1 -1 1 3],[ 2 0 1 0 -1 1 3],[ 0 -1 0 0 -1 1 2],[ 1 0 0 0 -1 1 1],[ 1 1 1 1 0 1 0],[-1 -1 -1 -1 -1 0 0],[-3 -3 -2 -1 0 0 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 0 -2 0 -1 -3],[-1 0 0 -1 -1 -1 -1],[ 0 2 1 0 -1 0 -1],[ 1 0 1 1 0 1 1],[ 1 1 1 0 -1 0 0],[ 2 3 1 1 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,0,2,0,1,3,1,1,1,1,1,0,1,-1,-1,0] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,2,0,1,3,1,1,1,1,1,0,1,-1,-1,0] |
Phi of -K |
[-2,-1,-1,0,1,3,1,2,1,2,2,1,1,1,3,0,1,4,0,1,2] |
Phi of K* |
[-3,-1,0,1,1,2,2,1,3,4,2,0,1,1,2,1,0,1,-1,1,2] |
Phi of -K* |
[-2,-1,-1,0,1,3,-1,0,1,1,3,1,1,1,0,0,1,1,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
6z^2+25z+27 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+8w^3z^2+25w^2z+27w |
Inner characteristic polynomial |
t^6+22t^4+30t^2+1 |
Outer characteristic polynomial |
t^7+38t^5+67t^3+10t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**3 + 8*K1**2*K2 - 4*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
-1152*K1**4*K2**2 + 2464*K1**4*K2 - 4544*K1**4 - 384*K1**3*K2**2*K3 + 1376*K1**3*K2*K3 - 832*K1**3*K3 + 384*K1**2*K2**5 - 2752*K1**2*K2**4 - 384*K1**2*K2**3*K4 + 5792*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 960*K1**2*K2**2*K4 - 13712*K1**2*K2**2 - 1632*K1**2*K2*K4 + 9696*K1**2*K2 - 384*K1**2*K3**2 - 32*K1**2*K3*K5 - 2148*K1**2 + 256*K1*K2**5*K3 - 256*K1*K2**3*K3*K4 + 3552*K1*K2**3*K3 + 320*K1*K2**2*K3*K4 - 2144*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 960*K1*K2**2*K5 - 384*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7936*K1*K2*K3 - 32*K1*K2*K4*K5 + 560*K1*K3*K4 + 96*K1*K4*K5 + 8*K1*K5*K6 - 128*K2**8 + 256*K2**6*K4 - 1472*K2**6 - 192*K2**4*K3**2 - 192*K2**4*K4**2 + 1664*K2**4*K4 - 4352*K2**4 + 224*K2**3*K3*K5 + 64*K2**3*K4*K6 - 224*K2**3*K6 - 976*K2**2*K3**2 - 472*K2**2*K4**2 + 2896*K2**2*K4 - 80*K2**2*K5**2 - 8*K2**2*K6**2 - 434*K2**2 + 480*K2*K3*K5 + 120*K2*K4*K6 + 8*K2*K5*K7 - 972*K3**2 - 350*K4**2 - 64*K5**2 - 14*K6**2 + 2644 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {4, 5}, {2, 3}, {1}]] |
If K is slice |
False |